Fixed point property and normal structure for Banach spaces associated to locally compact groups
HTML articles powered by AMS MathViewer
- by Anthony To-ming Lau, Peter F. Mah and Ali Ülger
- Proc. Amer. Math. Soc. 125 (1997), 2021-2027
- DOI: https://doi.org/10.1090/S0002-9939-97-03773-8
- PDF | Request permission
Abstract:
In this paper we investigate when various Banach spaces associated to a locally compact group $G$ have the fixed point property for nonexpansive mappings or normal structure. We give sufficient conditions and some necessary conditions about $G$ for the Fourier and Fourier-Stieltjes algebras to have the fixed point property. We also show that if a $C^{*}$-algebra $\mathfrak {A}$ has the fixed point property then for any normal element $a$ of $\mathfrak {A}$, the spectrum $\sigma (a)$ is countable and that the group $C^{*}$-algebra $C^{*}(G)$ has weak normal structure if and only if $G$ is finite.References
- Asuman G. Aksoy and Mohamed A. Khamsi, Nonstandard methods in fixed point theory, Universitext, Springer-Verlag, New York, 1990. With an introduction by W. A. Kirk. MR 1066202, DOI 10.1007/978-1-4612-3444-9
- Dale E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), no. 3, 423–424. MR 612733, DOI 10.1090/S0002-9939-1981-0612733-0
- Larry Baggett and Keith Taylor, Groups with completely reducible regular representation, Proc. Amer. Math. Soc. 72 (1978), no. 3, 593–600. MR 509261, DOI 10.1090/S0002-9939-1978-0509261-X
- Alain Belanger and Brian E. Forrest, Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group, J. Math. Anal. Appl. 193 (1995), no. 2, 390–405. MR 1338711, DOI 10.1006/jmaa.1995.1242
- Richard D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodým property, Lecture Notes in Mathematics, vol. 993, Springer-Verlag, Berlin, 1983. MR 704815, DOI 10.1007/BFb0069321
- Felix E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 187120, DOI 10.1073/pnas.54.4.1041
- Cho-Ho Chu, A note on scattered $C^{\ast }$-algebras and the Radon-Nikodým property, J. London Math. Soc. (2) 24 (1981), no. 3, 533–536. MR 635884, DOI 10.1112/jlms/s2-24.3.533
- D. van Dulst and Brailey Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), Banach space theory and its applications (Bucharest, 1981) Lecture Notes in Math., vol. 991, Springer, Berlin-New York, 1983, pp. 35–43. MR 714171
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 70 (1987), no. 378, iv+116. MR 912637, DOI 10.1090/memo/0378
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York-Berlin, 1969. Second printing corrected. MR 0274666
- R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), no. 4, 743–749. MR 595102, DOI 10.1216/RMJ-1980-10-4-743
- Tadashi Huruya, A spectral characterization of a class of $C^*$-algebras, Sci. Rep. Niigata Univ. Ser. A 15 (1978), 21–24. MR 482243
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279
- Anthony To Ming Lau and Peter F. Mah, Normal structure in dual Banach spaces associated with a locally compact group, Trans. Amer. Math. Soc. 310 (1988), no. 1, 341–353. MR 937247, DOI 10.1090/S0002-9947-1988-0937247-0
- Anthony To Ming Lau and Ali Ülger, Some geometric properties on the Fourier and Fourier-Stieltjes algebras of locally compact groups, Arens regularity and related problems, Trans. Amer. Math. Soc. 337 (1993), no. 1, 321–359. MR 1147402, DOI 10.1090/S0002-9947-1993-1147402-7
- Chris Lennard, ${\scr C}_1$ is uniformly Kadec-Klee, Proc. Amer. Math. Soc. 109 (1990), no. 1, 71–77. MR 943795, DOI 10.1090/S0002-9939-1990-0943795-4
- B. Maurey, Points fixes des contractions sur convexe forme de $L^{1}$, Seminaine d’Analyse Functionnelle 80–81 Ecole Polytechnique.
- T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), no. 4, 683–741. MR 513952, DOI 10.1216/RMJ-1978-8-4-683
- A. Pełczyński and Z. Semadeni, Spaces of continuous functions. III. Spaces $C(\Omega )$ for $\Omega$ without perfect subsets, Studia Math. 18 (1959), 211–222. MR 107806, DOI 10.4064/sm-18-2-211-222
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- Keith F. Taylor, Geometry of the Fourier algebras and locally compact groups with atomic unitary representations, Math. Ann. 262 (1983), no. 2, 183–190. MR 690194, DOI 10.1007/BF01455310
Bibliographic Information
- Anthony To-ming Lau
- Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2G1
- MR Author ID: 110640
- Peter F. Mah
- Affiliation: Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario, Canada, P7B 5E1
- Email: pfmah@cs-acad-lan.lakeheadu.ca
- Ali Ülger
- Affiliation: Department of Mathematics, Koc University, 80860-Istinye, Istanbul, Turkey
- Email: aulger@ku.edu.tr
- Received by editor(s): August 29, 1995
- Received by editor(s) in revised form: January 19, 1996
- Additional Notes: The first author’s research was supported by an NSERC grant and the third author’s research was supported by TUBA
- Communicated by: J. Marshall Ash
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2021-2027
- MSC (1991): Primary 43A10, 43A15, 46B20, 47H09, 22D10; Secondary 54G12
- DOI: https://doi.org/10.1090/S0002-9939-97-03773-8
- MathSciNet review: 1372037