Formulae and continuity for the index of subfactors
HTML articles powered by AMS MathViewer
- by Sergey Dorofeev and Klaus Thomsen
- Proc. Amer. Math. Soc. 125 (1997), 2007-2011
- DOI: https://doi.org/10.1090/S0002-9939-97-03797-0
- PDF | Request permission
Abstract:
Let $N \subset M$ be an inclusion of $II_{1}$-factors, $\tau$ the trace state of $M$, and $\mathcal {P}(M)$, $\mathcal {P}(N)$ the set of projections in $M$ and $N$, respectively. We prove that the Jones index for the inclusion is \begin{equation*}\begin {split} [M : N ]&= sup_{e \in \mathcal {P}(M) \backslash \{0\}} inf_{p \in \mathcal {P}(N) \backslash \{0\}} \frac {\tau (p)}{\tau (ep)}\\ &=sup_{e \in \mathcal {P}(M) \backslash \{0\}} inf \{ \frac {\tau (p)}{\tau (ep)} : p \in \mathcal {P}(N), e \preceq p \} . \end{split}\end{equation*} This formula is exploited to obtain continuity results for the index. In particular, we obtain a formula for the index which expresses $[M:N]$ in terms of the positions of $N_{i}$ and $M_{j} , i,j \in \mathbb {N}$, in $M$, when $N_{1} \subset N_{2} \subset N_{3} \subset \cdots$ and $M_{1} \subset M_{2} \subset M_{3} \subset \cdots$ are finite-dimensional $C^{\ast }$-subalgebras with dense union in $N$ and $M$, respectively.References
- S. Dorofeev, K. Thomsen, Factors and subfactors arising from inductive limits of interval algebras, Preprint, Aarhus, 1996.
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- Bahman Mashhood and Keith F. Taylor, On continuity of the index of subfactors of a finite factor, J. Funct. Anal. 76 (1988), no. 1, 56–66. MR 923044, DOI 10.1016/0022-1236(88)90048-1
- Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57–106. MR 860811
Bibliographic Information
- Sergey Dorofeev
- Affiliation: Matematisk Institut, Ny Munkegade, 8000 Aarhus C, Denmark
- Email: dorofeev@mi.aau.dk
- Klaus Thomsen
- Affiliation: Matematisk Institut, Ny Munkegade, 8000 Aarhus C, Denmark
- Email: matkt@mi.aau.dk
- Received by editor(s): January 16, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2007-2011
- MSC (1991): Primary 46L37
- DOI: https://doi.org/10.1090/S0002-9939-97-03797-0
- MathSciNet review: 1376757