Solution curves for semilinear equations on a ball
HTML articles powered by AMS MathViewer
- by Philip Korman
- Proc. Amer. Math. Soc. 125 (1997), 1997-2005
- DOI: https://doi.org/10.1090/S0002-9939-97-04119-1
- PDF | Request permission
Abstract:
We show that the set of positive solutions of semilinear Dirichlet problem on a ball of radius $R$ in $R^n$ \[ \Delta u+\lambda f(u)=0 \; \; \text {for} \; \; |x|<R, \; \; u=0 \; \; \text {on} \; \; |x|=R \] consists of smooth curves. Our results can be applied to compute the direction of bifurcation. We also give an easy proof of a uniqueness theorem due to Smoller and Wasserman (1984).References
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161–180. MR 341212, DOI 10.1007/BF00282325
- E. N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Differential Equations 37 (1980), no. 3, 404–437. MR 590000, DOI 10.1016/0022-0396(80)90107-2
- L.C. Evans, Partial Differential Equations, Berkeley Lecture Notes in Mathematics. Vol. 3 A&B (1994).
- R. Gardner and L. A. Peletier, The set of positive solutions of semilinear equations in large balls, Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), no. 1-2, 53–72. MR 877892, DOI 10.1017/S0308210500019065
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879
- Marco Holzmann and Hansjörg Kielhöfer, Uniqueness of global positive solution branches of nonlinear elliptic problems, Math. Ann. 300 (1994), no. 2, 221–241. MR 1299061, DOI 10.1007/BF01450485
- P. Korman, Steady states and long time behavior of some convective reaction-diffusion equations, To appear in Funkcialaj Ekvacioj.
- P. Korman, Y. Li and T. Ouyang, Exact multiplicity results for boundary-value problems with nonlinearities generalizing cubic, Proc. Royal Soc. Edinburgh Ser. A 126A, 599-616 (1996).
- P. Korman, Y. Li and T. Ouyang, An exact multiplicity result for a class of semilinear equations, To appear in Comm. in PDE.
- Chang Shou Lin and Wei-Ming Ni, A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Math. Soc. 102 (1988), no. 2, 271–277. MR 920985, DOI 10.1090/S0002-9939-1988-0920985-9
- L. A. Peletier and James Serrin, Uniqueness of positive solutions of semilinear equations in $\textbf {R}^{n}$, Arch. Rational Mech. Anal. 81 (1983), no. 2, 181–197. MR 682268, DOI 10.1007/BF00250651
- Joel A. Smoller and Arthur G. Wasserman, Existence, uniqueness, and nondegeneracy of positive solutions of semilinear elliptic equations, Comm. Math. Phys. 95 (1984), no. 2, 129–159. MR 760329
Bibliographic Information
- Philip Korman
- Affiliation: Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025
- MR Author ID: 200737
- Email: korman@ucbeh.san.uc.edu
- Received by editor(s): January 9, 1996
- Communicated by: Jeffrey B. Rauch
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1997-2005
- MSC (1991): Primary 35J60
- DOI: https://doi.org/10.1090/S0002-9939-97-04119-1
- MathSciNet review: 1423311