## Solution curves for semilinear equations on a ball

HTML articles powered by AMS MathViewer

- by Philip Korman PDF
- Proc. Amer. Math. Soc.
**125**(1997), 1997-2005 Request permission

## Abstract:

We show that the set of positive solutions of semilinear Dirichlet problem on a ball of radius $R$ in $R^n$ \[ \Delta u+\lambda f(u)=0 \; \; \text {for} \; \; |x|<R, \; \; u=0 \; \; \text {on} \; \; |x|=R \] consists of smooth curves. Our results can be applied to compute the direction of bifurcation. We also give an easy proof of a uniqueness theorem due to Smoller and Wasserman (1984).## References

- Michael G. Crandall and Paul H. Rabinowitz,
*Bifurcation, perturbation of simple eigenvalues and linearized stability*, Arch. Rational Mech. Anal.**52**(1973), 161–180. MR**341212**, DOI 10.1007/BF00282325 - E. N. Dancer,
*On the structure of solutions of an equation in catalysis theory when a parameter is large*, J. Differential Equations**37**(1980), no. 3, 404–437. MR**590000**, DOI 10.1016/0022-0396(80)90107-2 - L.C. Evans, Partial Differential Equations,
*Berkeley Lecture Notes in Mathematics.***Vol. 3 A&B**(1994). - R. Gardner and L. A. Peletier,
*The set of positive solutions of semilinear equations in large balls*, Proc. Roy. Soc. Edinburgh Sect. A**104**(1986), no. 1-2, 53–72. MR**877892**, DOI 10.1017/S0308210500019065 - B. Gidas, Wei Ming Ni, and L. Nirenberg,
*Symmetry and related properties via the maximum principle*, Comm. Math. Phys.**68**(1979), no. 3, 209–243. MR**544879** - Marco Holzmann and Hansjörg Kielhöfer,
*Uniqueness of global positive solution branches of nonlinear elliptic problems*, Math. Ann.**300**(1994), no. 2, 221–241. MR**1299061**, DOI 10.1007/BF01450485 - P. Korman, Steady states and long time behavior of some convective reaction-diffusion equations, To appear in Funkcialaj Ekvacioj.
- P. Korman, Y. Li and T. Ouyang, Exact multiplicity results for boundary-value problems with nonlinearities generalizing cubic,
*Proc. Royal Soc. Edinburgh Ser. A***126A**, 599-616 (1996). - P. Korman, Y. Li and T. Ouyang, An exact multiplicity result for a class of semilinear equations, To appear in
*Comm. in PDE*. - Chang Shou Lin and Wei-Ming Ni,
*A counterexample to the nodal domain conjecture and a related semilinear equation*, Proc. Amer. Math. Soc.**102**(1988), no. 2, 271–277. MR**920985**, DOI 10.1090/S0002-9939-1988-0920985-9 - L. A. Peletier and James Serrin,
*Uniqueness of positive solutions of semilinear equations in $\textbf {R}^{n}$*, Arch. Rational Mech. Anal.**81**(1983), no. 2, 181–197. MR**682268**, DOI 10.1007/BF00250651 - Joel A. Smoller and Arthur G. Wasserman,
*Existence, uniqueness, and nondegeneracy of positive solutions of semilinear elliptic equations*, Comm. Math. Phys.**95**(1984), no. 2, 129–159. MR**760329**

## Additional Information

**Philip Korman**- Affiliation: Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025
- MR Author ID: 200737
- Email: korman@ucbeh.san.uc.edu
- Received by editor(s): January 9, 1996
- Communicated by: Jeffrey B. Rauch
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 1997-2005 - MSC (1991): Primary 35J60
- DOI: https://doi.org/10.1090/S0002-9939-97-04119-1
- MathSciNet review: 1423311