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SOLUTION CURVES

FOR SEMILINEAR EQUATIONS ON A BALL

PHILIP KORMAN

(Communicated by Jeffrey B. Rauch)

Abstract. We show that the set of positive solutions of semilinear Dirichlet
problem on a ball of radius R in Rn

∆u + λf(u) = 0 for |x| < R, u = 0 on |x| = R

consists of smooth curves. Our results can be applied to compute the direction
of bifurcation. We also give an easy proof of a uniqueness theorem due to
Smoller and Wasserman (1984).

1. Introduction

We consider positive solutions of a semilinear problem

∆u + λf(u) = 0 for |x| < R, u = 0 on |x| = R(1.1)

on a ball of radius R in Rn. Our study of (1.1) will depend in a crucial way on the
properties of the linearized equation

∆w + λf ′(u)w = 0 in |x| < R, w = 0 on |x| = R.(1.2)

By a well-known result of B. Gidas, W.-M. Ni and L. Nirenberg [5] positive solutions
of (1.1) are radially symmetric, i.e. u = u(r), where r = |x|, and moreover, u′(r) < 0
for all r ∈ (0, R). By a theorem of C.S. Lin and W.-M. Ni [10] all solutions of (1.2)
are also radially symmetric. Accordingly, we shall study the ODE versions of these
equations; see the equations (2.1) and (2.2) below.

We show that solutions of (1.1) lie on smooth curves in the (λ, u) “plane”, i.e.
either solution of (1.1) can be continued in λ, or else it is a simple turning point.
Apart from smoothness, our only assumption on f(u) is that f(0) ≥ 0. We dis-
tinguish two possibilities. If (1.2) admits only the trivial solution (one then refers
to the solution u of (1.1) as non-degenerate) then the implicit function theorem
applies, allowing us to continue solutions. If u is degenerate, i.e. (1.2) admits
nontrivial solutions, then we show that the bifurcation theorem of M.G. Crandall
and P.H. Rabinowitz [1] applies. Our Lemma 2.1 not only verifies the crucial con-
dition of that theorem, but allows in some cases the computation of the direction
of bifurcation. In fact, in a recent paper of P. Korman, Y. Li and T. Ouyang [9]
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a two-dimensional variant of this lemma was used to prove an exact multiplicity
result for a class of equations which includes the problem

∆u + λu(u− a)(b− u) = 0 in |x| < R, u = 0 on |x| = R,

in two dimensions, with constant 0 < a < 1
2b. Namely, we proved that there is a

critical λ0 > 0, so that the problem has exactly zero, one or two positive solutions,
depending on whether λ is less than, equal to or greater than λ0.

We also give a simple proof of a uniqueness result of J.A. Smoller and A.G.
Wasserman [12]. In [12] it is proved that the problem (1.1) under the conditions
(2.13) and (2.14) can have at most one positive solution. The proof is rather com-
plicated. Then in the last section of [12] it is shown that under the same conditions
any positive solution of (1.1) is non-degenerate. We found it advantageous to re-
verse the steps. First, we give a very simple proof of non-degeneracy of solutions.
This implies that any solution curve cannot turn. Uniqueness of solutions will fol-
low, if one can show that all solutions of (1.1) lie on a single solution curve. This
we do by showing that there is only one curve approaching “infinity”, obtaining
a considerably simpler proof of uniqueness. This approach to uniqueness, which
does not involve the “shooting” method, is quite general. In a forthcoming paper
we obtain a similar uniqueness result for a wide class of nonlinearities on annular
domains.

Without loss of generality we shall assume that R = 1. We shall denote the
derivative of u(r) by either u′ or ur, and will mix both notations to make proofs
more transparent.

Next we state a bifurcation theorem of Crandall-Rabinowitz [1].

Theorem 1.1 ([1]). Let X and Y be Banach spaces. Let (λ, x) ∈ R × X and
let F be a continuously differentiable mapping of an open neighborhood of (λ, x)
into Y . Let the null-space N(Fx(λ, x)) = span{x0} be one-dimensional and

codimR(Fx(λ, x)) = 1. Let Fλ(λ, x) 6∈ R(Fx(λ, x)). If Z is a complement of
span{x0} in X, then the solutions of F (λ, x) = F (λ, x) near (λ, x) form a curve

(λ(s), x(s)) = (λ + τ(s), x + sx0 + z(s)),

where s→ (τ(s), z(s)) ∈ R×Z is a continuously differentiable function near s = 0
and τ(0) = τ ′(0) = 0, z(0) = z′(0) = 0.

2. Global solution curves on a ball

In this section we consider positive solutions of the problem

u′′(r) +
n− 1

r
u′(r) + f(u) = 0, r ∈ (0, 1), u′(0) = u(1) = 0.(2.1)

We shall need the linearized equation

w′′ +
n− 1

r
w′ + f ′(u)w = 0, r ∈ (0, 1), w′(0) = w(1) = 0.(2.2)

The following lemma generalizes a similar result for the n = 2 case in [7].

Lemma 2.1. Let f(u) ∈ C2(R̄+) satisfy f(0) ≥ 0. Assume that (2.2) admits a
nontrivial solution. Then ∫ 1

0

f(u)wrn−1dr > 0.(2.3)
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Proof. Notice that condition f(0) ≥ 0 and the Hopf’s boundary lemma imply that
(see e.g. [3]) u′(1) < 0. We may also assume that w′(1) < 0. Differentiate (2.1):

u′′′ +
(
n− 1

r
u′
)′

+ f ′(u)u′ = 0.(2.4)

Multiply the equation (2.2) by rnu′, and subtract from it (2.4) multiplied by rnw,
then integrate over (0, 1). Obtain

∫ 1

0

[
rnu′w′′ − rnu′′′w + (n− 1)rn−1u′w′ − rn

(
n− 1

r
u′
)′

w

]
dx = 0.

(2.5)

Integrate by parts in the first, second and fourth terms. Obtain:

rnu′w′|10 +

∫ 1

0

[−nrn−1u′w′ − rnu′′w′ + nrn−1wu′′ + rnw′u′′

+(n− 1)rn−1u′w′ + n(n− 1)rn−2u′w + (n− 1)rn−1u′w′]dr = 0.

After cancellations

u′(1)w′(1) +

∫ 1

0

[(n− 2)rn−1u′w′ + nrn−1(u′′ +
n− 1

r
u′)w]dr = 0.

(2.6)

Integrating by parts again,∫ 1

0

rn−1u′w′dr = −
∫ 1

0

[(n− 1)rn−2u′w + rn−1u′′w]dr

= −
∫ 1

0

rn−1(u′′ +
n− 1

r
u′)wdr.

Using this in (2.6)

u′(1)w′(1) + 2

∫ 1

0

rn−1(u′′ +
n− 1

r
u′)wdr = 0.

Finally, using the equation (2.1), we conclude∫ 1

0

rn−1f(u)wdr =
1

2
u′(1)w′(1) > 0.

We now present a theorem on local parameterization of positive solutions, which
is similar to Theorem 4.1 in [6]. We denote by B the unit ball in Rn.

Theorem 2.1. Assume f(u) ∈ C2(R̄+) satisfies f(0) ≥ 0. Let (λ0, u0) ∈ R ×
C2,α(B̄) be any solution of

∆u + λf(u) = 0 for |x| < 1, u = 0 for |x| = 1,(2.7)

where u(0) = p0 > 0. Then there are a neighborhood U of (λ0, u0) in R× C2,α(B̄)
and a C1 curve

C = {(λ(p), u(p)), p ∈ (p0 − δ, p0 + δ) for some δ > 0}
of solutions of (2.7) with (λ(p0), u(p0)) = (λ0, p0), such that all solutions of (2.7)
in U are on C. The parameter p is the maximum of solution, p = u(0).
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Proof. We will show first that solutions of (2.7) lie on a smooth curve near (λ0, u0).
We consider the linearization of (2.7)

∆w + λ0f
′(u0)w = 0 in B, w = 0 on ∂B.(2.8)

If (2.8) has only the trivial solution, then the implicit function theorem applies,
producing a C1 curve of solutions near (λ0, u0). So assume that (2.8) has nontrivial
solutions at (λ0, u0). We shall verify the conditions of the Crandall-Rabinowitz
theorem at that point. We denote X = {u ∈ C2,α(B̄)|u = 0 on∂B} and Y =
Cα(B̄), and consider the map F : R+ ×X → Y defined by F (λ, u) = ∆u + λf(u).
Clearly zeros of the map F are solutions of (2.7), and the null-space of Fu(λ0, u0)
consists of solutions of (2.8). We recall a result of C.S. Lin and W.-M. Ni [10]
which states that any solution of (2.8) is radially symmetric. It follows that the
null-space of Fu(λ0, u0) is one-dimensional, since it can be parameterized by w′(1)
(using a uniqueness theorem from ODE’s). Since Fu(λ0, u0) is a Fredholm operator
of index zero, it follows that codim R(Fu(λ0, u0)) = 1. Finally, if the condition
Fλ(λ0, u0) /∈ R(Fu(λ0, u0)) was violated, one could find z ∈ X satisfying

∆z + λ0f
′(u0)z = f(u0) in B, z = 0 on ∂B.(2.9)

Since w is solution of the homogeneous version of (2.9), we have by the Fredholm
alternative

0 =

∫
B

f(u)w dx = nωn

∫ 1

0

f(u)wrn−1 dr,

contradicting Lemma 2.1. We conclude that the Crandall-Rabinowitz theorem ap-
plies, which implies that the solution set of (2.7) near (λ0, u0) consists of a C1 curve
C.

It remains to show that the curve C can be parameterized by the amplitude
u(0) = p. By Theorem 1.1, in the case when Fu(λ0, u0) is non-invertible, we can
represent the curve C near (λ0, u0) as

u(r, s) = u0(r) ± sw(r) + o(s) for s close to 0,

where w = w(r) is a non-trivial solution of the linearized equation (2.8). Hence we
can locally parameterize the solution by p = u(0), provided w(0) 6= 0. If we assume
the contrary, then w(r) solves

w′′ +
n− 1

r
w′ + λf ′(u)w = 0, w(0) = w′(0) = 0.(2.10)

An obvious modification of the argument in L.A. Peletier and J. Serrin [11, p.190]
shows that w(r) vanishes identically, a contradiction. Next we consider the case
when Fu(λ0, u0) is invertible. Then the implicit function theorem applies, and for
small ∆λ

u(r, λ0 + ∆λ) = u(r, λ0) + uλ(r, λ0)∆λ + o(∆λ).

As before we can parameterize solutions locally by p = u(0), provided uλ(0) 6= 0.
If we assume the contrary, then uλ satisfies

u′′λ(r) +
n− 1

r
u′λ(r) + λf ′(u)uλ(r) = −f(u) for r ∈ (0, 1),(2.11)

uλ(0) = u′λ(0) = uλ(1) = 0.
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Proceeding similarly to [6], we notice that z(r) ≡ rur is a solution of

z′′(r) +
n− 1

r
z′(r) + λ0f

′(u0)z(r) = −2λ0f(u0),(2.12)

z(0) = z′(0) = 0.

From (2.11) and (2.12) we see that w(r) ≡ 2λ0uλ − z(r) is a solution of (2.10).
Hence, w ≡ 0 on [0, 1]; in particular w(1) = 0, i.e. u′(1) = 0, a contradiction.

Remark. After this paper was submitted, we learned from E.N. Dancer that Theo-
rem 2.1 can also be proved using the methods of his paper [2]. Our Lemma 2.1 has
other applications, including computation of the direction of bifurcation, see e.g.
[9].

Next we turn to a uniqueness result for (1.1) first proved by J.A. Smoller and
A.G. Wasserman [12]. We assume that f(u) ∈ C2(R+) and it satisfies

f ′(u) >
f(u)

u
for almost all u > 0,(2.13)

f ′′(u) ≤ 0 for u > 0.(2.14)

Our first goal is to show that under these conditions the linearized equation (2.2)
has only the trivial solution. This will follow from the following lemmas.

Recall that we had excluded the possibility that w(0) = 0, so that we may assume
for definiteness that w(0) > 0.

Lemma 2.2. Assume that condition (2.13) holds. Then any solution of the lin-
earized equation (2.2) must vanish somewhere on (0, 1).

Proof. Assume that on the contrary w(r) > 0 on (0, 1). From the equations (2.1)
and (2.2) we obtain

(u′w − uw′)′ +
n− 1

r
(u′w − uw′) + (f(u)− f ′(u)u)w = 0.(2.15)

Letting q(r) ≡ u′w − uw′, we obtain using (2.13)(
rn−1q

)′
> 0.

Integrating over (0, 1) we obtain

q(1) > 0.

This contradicts the obvious equality q(1) = 0.

Lemma 2.3. Assume w(0) > 0, and let ξ be the first (smallest) point where
w(ξ) = 0. Then

f(u(ξ)) ≤ 0.(2.16)

Proof. We differentiate both equation (2.1) and (2.2), obtaining

u′′r +
n− 1

r
u′r + f ′(u)ur − n− 1

r2
ur = 0,(2.17)

w′′r +
n− 1

r
w′r + f ′(u)wr − n− 1

r2
wr + f ′′(u)urw = 0.(2.18)
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We now multiply the equation (2.17) by rn−1w′ and subtract from it the equation
(2.18) multiplied by rn−1u′,

rn−1(u′′w′ − u′w′′)′ + (n− 1)rn−2(u′′w′ − u′w′′)(2.19)

= rn−1f ′′(u)u2
rw.

Setting p(r) ≡ u′′w′ − u′w′′, and using our condition (2.14), we obtain from (2.19)

d

dr

[
rn−1p

] ≤ 0.

Integrating over (0, ξ), we conclude

p(ξ) ≤ 0.(2.20)

Since w(ξ) = 0, we express from (2.2) w′′(ξ) = −n−1
ξ w′(ξ), and then by (2.20) and

(2.1)

0 ≥ p(ξ) =

(
u′′(ξ) +

n− 1

ξ
u′(ξ)

)
w′(ξ) = −f(u(ξ))w′(ξ).

Since clearly w′(ξ) < 0, we conclude that f(u(ξ)) ≤ 0.

Next we need an elementary lemma.

Lemma 2.4. Let the function f(u) satisfy (2.13) and (2.14). Then f(u) has the
following properties: f(0) < 0, f(u) changes sign at most once on (0,∞). If
moreover we are given that the problem (2.1) has a positive solution, then f(u)
changes sign exactly once on (0,∞), and it is an increasing function on (0,∞).
Finally, there is a constant c > 0, such that

lim
u→∞

f(u)

u
= c.(2.21)

Proof. Condition (2.13) implies that
(
f(u)
u

)′
> 0, i.e. the function f(u)

u is increas-

ing, and then f(u)
u > f(δ)

δ for all u > δ > 0. Letting δ → 0, we rule out the

possibility of f(0) > 0. If one assumes f(0) = 0, then f(u)
u > limu→0

f(u)
u = f ′(0).

I.e., f(u) > f ′(0)u for all u > 0. On the other hand, by (2.14) f ′(u) ≤ f ′(0) for
all u > 0. Integrating, we get f(u) ≤ f ′(0)u, a contradiction. Hence f(0) < 0. By
(2.13) f(u) cannot change sign more than once. If f(u) is negative for all u > 0
then by the maximum principle (2.1) cannot have positive solutions. Since we are
interested in positive solutions of (2.1) we shall assume from now on that f(u)
changes sign exactly once, say at u = θ.

For u > θ the function f ′(u) is positive and decreasing. Hence
limu→∞ f ′(u) exists, call it c ≥ 0. The possibility of c = 0 is inconsistent with
f(u)
u being increasing. Hence c > 0, and (2.21) follows by L’Hóspital rule.

Remark. The class of functions satisfying the conditions (2.13) and (2.14) includes
functions like f(u) = c1u− c2 − e−αu with positive c1, c2 and α.

Theorem 2.2. Under the conditions (2.13) and (2.14) the problem (2.2) admits
only the trivial solution. (In other words, any solution of (2.1) is non-degenerate.)

Proof. Assume that w(r) is a nontrivial solution of (2.2). Let ξ be its smallest
root, whose existence follows by Lemma 2.2. Since u(r) is a decreasing function, it
follows, in view of Lemma 2.3, that

f(u(r)) < 0 for all r ∈ (ξ, 1).(2.22)
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We may assume that w(r) is positive near r = 1. We can then find η ∈ (ξ, 1) such
that w(η) > 0, w′(η) = 0 and

w′(r) ≤ 0 for r ∈ (η, 1).(2.23)

(E.g. η the largest point of local maximum of w(r) on (ξ, 1).) We now multiply
the equation (2.1) by w′, the equation (2.2) by u′ and add, obtaining

d

dr
(u′w′) +

2

r
(n− 1)u′w′ +

d

dr
(f(u)w) = 0.

Integrating over (η, 1), we have

u′(1)w′(1) + 2(n− 1)

∫ 1

η

1

r
u′w′ dr − f(u(η))w(η) = 0.(2.24)

In view of (2.22) and (2.23) all three terms in (2.24) are positive, a contradiction.

We are now ready to give an alternative proof of the uniqueness result of Smoller
and Wasserman [12].

Theorem 2.3. Under the conditions (2.13) and (2.14) the problem

∆u + f(u) = 0 for |x| < 1, u = 0 on |x| = 1(2.25)

can have at most one positive solution.

Proof. We imbed the problem (2.25) into a family of problems

∆u + λf(u) = 0 for |x| < 1, u = 0 on |x| = 1(2.26)

with a positive parameter λ. Let u0 be a positive solution of (2.25). Then (λ =
1, u = u0) is a solution of (2.26). By Theorem 2.2 we can continue this solution
for decreasing λ, and the solution curve can have no turns. Next we claim that
this solution branch u(r, λ) cannot lose its positivity when decreasing λ. Since any
positive solution of (2.26) is a decreasing function of r, the only way the positivity
can get lost is that for some λ1 we have u′(1, λ1) = 0 and then for λ < λ1 the
solution u(r, λ) becomes negative near r = 1. Then uλ(r, λ1) would have to be
positive near r = 1. (By the definition of λ1 it is clear that uλ(r, λ1) cannot be
negative on an interval containing r = 1. If uλ(r, λ1) failed to be positive in some
interval containing r = 1, we could find a sequence rn → 1, such that uλ(rn, λ1) = 0.
Let µn → 1 be points of positive local maxima of uλ(r, λ1), i.e. uλ(µn, λ1) > 0 and
u′λ(µn, λ1) = 0. We now evaluate (2.11) at r = µn. The first term on the left is
negative, the second one is zero, and the third term is positive and tending to zero.
The right-hand side tends to −f(0) > 0, a contradiction.) Then as before we see
that z(r) ≡ rur(r, λ1) − 2λ1uλ(r, λ1) is a nontrivial solution of the linearization
of (2.26) at λ = λ1, contradicting Theorem 2.2 (notice that z(1) = 0, and z(r) is
negative near r = 1).

Our branch of solutions cannot approach the point λ = 0, u = 0 (just multiply
the equation (2.26) by u and integrate). Clearly (2.26) does not admit a trivial
solution for λ > 0. So the only possibility left is that u(r, λ) → ∞ as λ tends to

some λ0 ≥ 0. Setting V (r, λ) = u(r,λ)
u(0,λ) it is standard to show, using (2.21), that as

λ→ λ0, V (r, λ) approaches a nontrivial nonnegative solution of

∆v + λ0cv = 0 for |x| < 1, v = 0 on |x| = 1.
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It follows that λ0c = λ1, where λ1 is the principal eigenvalue of the Laplacian on the
unit ball, and there is only one curve going to infinity. Since all positive solutions
of (2.26) lie on a single curve, which admits no turns, it follows that for any λ this
problem has at most one positive solution.

Remark. It follows from the proof that (2.26) can have positive solutions only when
cλ > λ1. For increasing λ the solution branch u(r, λ) may lose its positivity, as
the following numerical example shows. In one dimension we solved the problem
(u = u(x))

u′′ + λ(u − 1− e−u) = 0 on (0, 1), u(0) = u(1) = 0.(2.27)

Here λ1 = π2. Our computations indicate a positive solution for π2 < λ < λ̄, with
λ̄ ≈ 35. As λ ↓ π2 the solution goes to infinity, becoming uniformly large. As
λ increases past the critical value λ̄, the solution becomes negative near the end
points x = 0 and x = 1, after which it preserves the same nodal structure, and
quickly goes to infinity. (Incidentally, it is easy to calculate λ̄ analytically. Denote
f(u) = (u− 1− e−u), F (u) =

∫ u
0
f(t) dt. Multiplying (2.27) by u′, and integrating

over (0, 1/2), we compute u(1/2) = β, where β is defined by
∫ β
0 f(u) du = 0, β ≈

2.69 for this problem. Multiplying (2.27) by u′ and integrating, 1
2u
′2 + λF (u) = 0,

from which we easily conclude that λ̄ = 2

(∫ β
0

du√
−F (u)

)2

.)
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