Hereditary noetherian categories with a tilting complex
HTML articles powered by AMS MathViewer
- by Helmut Lenzing
- Proc. Amer. Math. Soc. 125 (1997), 1893-1901
- DOI: https://doi.org/10.1090/S0002-9939-97-04122-1
- PDF | Request permission
Abstract:
We are characterizing the categories of coherent sheaves on a weighted projective line as the small hereditary noetherian categories without projectives and admitting a tilting complex. The paper is related to recent work with de la Peña (Math. Z., to appear) characterizing finite dimensional algebras with a sincere separating tubular family, and further gives a partial answer to a question of Happel, Reiten, Smalø(Mem. Amer. Math. Soc. 120 (1996), no. 575) regarding the characterization of hereditary categories with a tilting object.References
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on $\textbf {P}^{n}$ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387
- Peter Gabriel, Indecomposable representations. II, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971 & Convegno di Geometria, INDAM, Rome, 1972) Academic Press, London, 1973, pp. 81–104. MR 0340377
- Werner Geigle and Helmut Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 265–297. MR 915180, DOI 10.1007/BFb0078849
- Werner Geigle and Helmut Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), no. 2, 273–343. MR 1140607, DOI 10.1016/0021-8693(91)90107-J
- Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124, DOI 10.1017/CBO9780511629228
- D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575.
- Dieter Happel and Claus Michael Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399–443. MR 675063, DOI 10.1090/S0002-9947-1982-0675063-2
- H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, CMS Conf. Proc. 18 (1996), 455–473.
- H. Lenzing and J. A. de la Peña, Algebras with a separating tubular family, Math. Z., to appear.
- Claus Michael Ringel, The canonical algebras, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 407–432. With an appendix by William Crawley-Boevey. MR 1171247
Bibliographic Information
- Helmut Lenzing
- Affiliation: Universität-GH Paderborn, Fachbereich Mathematik-Informatik, D-33095 Pader- born, Germany
- MR Author ID: 112610
- Email: helmut@uni-paderborn.de
- Received by editor(s): February 9, 1995
- Communicated by: Eric M. Friedlander
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 1893-1901
- MSC (1991): Primary 14G14, 16G20; Secondary 18F20, 18E30
- DOI: https://doi.org/10.1090/S0002-9939-97-04122-1
- MathSciNet review: 1423314
Dedicated: In memory of Maurice Auslander