Characterization of the duals of lattices of continuous functions with respect to disjointness preserving groups
HTML articles powered by AMS MathViewer
- by Andrey Y. Biyanov
- Proc. Amer. Math. Soc. 125 (1997), 2571-2579
- DOI: https://doi.org/10.1090/S0002-9939-97-03064-5
- PDF | Request permission
Abstract:
The duals of $C_{0}(a, b)$ and $C[a, b]$ with respect to disjointness preserving groups are characterized. A. Plessner’s result (1929) about the translation group is extended. A Wiener-Young type theorem for disjointness preserving groups is obtained.References
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- Ben de Pagter, A Wiener-Young type theorem for dual semigroups, Acta Appl. Math. 27 (1992), no. 1-2, 101–109. Positive operators and semigroups on Banach lattices (Curaçao, 1990). MR 1184882, DOI 10.1007/BF00046641
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Marek Kuczma, Functional equations in a single variable, Monografie Matematyczne, Tom 46, Państwowe Wydawnictwo Naukowe, Warsaw, 1968. MR 0228862
- W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1971. MR 0511676
- Peter Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. MR 1128093, DOI 10.1007/978-3-642-76724-1
- W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450, DOI 10.1007/BFb0074922
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- A. Plessner, Eine Kennzeichnung der totalstetigen Funktionen, J. Reine Angew. Math. 60 (1929), 26–32.
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Jan van Neerven, The adjoint of a semigroup of linear operators, Lecture Notes in Mathematics, vol. 1529, Springer-Verlag, Berlin, 1992. MR 1222650, DOI 10.1007/BFb0085008
- N. Wiener and R. C. Young, The total variation of $g(x+h)-g(x)$, Trans. Amer. Math. Soc. 33 (1935), 327–340.
Bibliographic Information
- Andrey Y. Biyanov
- Affiliation: California Institute of Technology, 253-37, Caltech, Pasadena, California 91125
- Address at time of publication: 155 Lexington St. #33, Auburndale, MA 02166
- Email: abiyanov@cco.caltech.edu, biyanov@msn.com
- Received by editor(s): September 2, 1994
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2571-2579
- MSC (1991): Primary 47D03, 46B10, 46E05, 47B65
- DOI: https://doi.org/10.1090/S0002-9939-97-03064-5
- MathSciNet review: 1301489