On the ideal-triangularizability of positive operators on Banach lattices
HTML articles powered by AMS MathViewer
- by Mohammed Taghi Jahandideh
- Proc. Amer. Math. Soc. 125 (1997), 2661-2670
- DOI: https://doi.org/10.1090/S0002-9939-97-03885-9
- PDF | Request permission
Abstract:
There are some known results that guarantee the existence of a nontrivial closed invariant ideal for a quasinilpotent positive operator on an $AM$-space with unit or a Banach lattice whose positive cone contains an extreme ray. Some recent results also guarantee the existence of such ideals for certain positive operators, e.g. a compact quasinilpotent positive operator, on an arbitrary Banach lattice. The main object of this article is to use these results in constructing a maximal closed ideal chain, each of whose members is invariant under a certain collection of operators that are related to compact positive operators, or to quasinilpotent positive operators.References
- Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, On the spectral radius of positive operators, Math. Z. 211 (1992), no. 4, 593–607. MR 1191098, DOI 10.1007/BF02571448
- Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Invariant subspaces of operators on $l_p$-spaces, J. Funct. Anal. 115 (1993), no. 2, 418–424. MR 1234398, DOI 10.1006/jfan.1993.1097
- Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Invariant subspace theorems for positive operators, J. Funct. Anal. 124 (1994), no. 1, 95–111. MR 1284604, DOI 10.1006/jfan.1994.1099
- Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Invariant subspaces for positive operators acting on a Banach space with basis, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1773–1777. MR 1242069, DOI 10.1090/S0002-9939-1995-1242069-9
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- M. D. Choi, E. A. Nordgren, H. Radjavi, P. Rosenthal, and Y. Zhong, Triangularizing semigroups of quasinilpotent operators with nonnegative entries, Indiana Univ. Math. J. 42 (1993), no. 1, 15–25. MR 1218704, DOI 10.1512/iumj.1993.42.42002
- C. Laurie, E. Nordgren, H. Radjavi, and P. Rosenthal, On triangularization of algebras of operators, J. Reine Angew. Math. 327 (1981), 143–155. MR 631313, DOI 10.1016/S0024-3795(01)00288-9
- Eric Nordgren, Heydar Radjavi, and Peter Rosenthal, Triangularizing semigroups of compact operators, Indiana Univ. Math. J. 33 (1984), no. 2, 271–275. MR 733900, DOI 10.1512/iumj.1984.33.33014
- Ben de Pagter, Irreducible compact operators, Math. Z. 192 (1986), no. 1, 149–153. MR 835399, DOI 10.1007/BF01162028
- Heydar Radjavi, On the reduction and triangularization of semigroups of operators, J. Operator Theory 13 (1985), no. 1, 63–71. MR 768302
- R. J. Ringrose, Compact Non-self-adjoint Operators, Princeton, 1971.
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039
- Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399
Bibliographic Information
- Mohammed Taghi Jahandideh
- Affiliation: Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
- Address at time of publication: School of Mathematics, Isfahan University of Technology, Isfahan 84156, Iran
- Received by editor(s): December 11, 1995
- Received by editor(s) in revised form: March 29, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2661-2670
- MSC (1991): Primary 47B65, 47A15
- DOI: https://doi.org/10.1090/S0002-9939-97-03885-9
- MathSciNet review: 1396983