Type I $C^*$-algebras of real rank zero
HTML articles powered by AMS MathViewer
- by Huaxin Lin
- Proc. Amer. Math. Soc. 125 (1997), 2671-2676
- DOI: https://doi.org/10.1090/S0002-9939-97-03890-2
- PDF | Request permission
Abstract:
We show that a separable $C^*$-algebra $A$ of type I has real rank zero if and only if $d({\hat A})=0,$ where $d$ is a modified dimension. We also show that a separable $C^*$-algebra of type I has real rank zero if and only if it is an AF-algebra.References
- Ola Bratteli and George A. Elliott, Structure spaces of approximately finite-dimensional $C^{\ast }$-algebras. II, J. Functional Analysis 30 (1978), no. 1, 74–82. MR 513479, DOI 10.1016/0022-1236(78)90056-3
- L. G. Brown, Extensions of AF algebras: The projection lifting problem, Proceedings Symposia in Pure Mathematics 38 (American Mathematical Society, Providence, 1982),
- Lawrence G. Brown and Gert K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131–149. MR 1120918, DOI 10.1016/0022-1236(91)90056-B
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- M. Dadarlat and G. Gong, A classification result for approximately homogeneous $C^*$-algebras of real rank zero, preprint.
- G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1876), 29-44.
- George A. Elliott, On the classification of $C^*$-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179–219. MR 1241132, DOI 10.1515/crll.1993.443.179
- G. A. Elliott, The classification problem for amenable $C^*$-algebras, Proc. ICM ’94, to appear.
- G. A. Elliott and G. Gong, On the classification of $C^*$-algebras of real rank zero, II, Ann. Math. 144 (1996), 497–610.
- H. Lin and H. Su, Classification of direct limits of generalized Toeplitz algebras, Pacific J. Math., to appear.
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
Bibliographic Information
- Huaxin Lin
- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
- Email: lin@darkwing.uoregon.edu
- Received by editor(s): November 13, 1995
- Received by editor(s) in revised form: April 4, 1996
- Additional Notes: Research partially supported by NSF grants DMS 93-01082
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2671-2676
- MSC (1991): Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-97-03890-2
- MathSciNet review: 1396987