On solutions of real analytic equations
HTML articles powered by AMS MathViewer
- by Tejinder S. Neelon
- Proc. Amer. Math. Soc. 125 (1997), 2531-2535
- DOI: https://doi.org/10.1090/S0002-9939-97-03894-X
- PDF | Request permission
Abstract:
Analyticity of $\mathcal {C}^\infty$ solutions $y_i =f_i(x), 1\le i\le m$, of systems of real analytic equations $p_j(x,y)= 0, 1\le j\le l$, is studied. Sufficient conditions for $\mathcal {C}^\infty$ and power series solutions to be real analytic are given in terms of iterative Jacobian ideals of the analytic ideal generated by $p_1,p_2,\ldots ,p_l$. In a special case when the $p_i$’s are independent of $x$, we prove that if a $\mathcal {C}^\infty$ solution $h$ satisfies the condition $\det \left ( \frac {\partial p_i}{py_j}\right )(h(x)) \not \equiv 0$, then $h$ is necessarily real analytic.References
- M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277–291. MR 232018, DOI 10.1007/BF01389777
- M. S. Baouendi and Linda Preiss Rothschild, Images of real hypersurfaces under holomorphic mappings, J. Differential Geom. 36 (1992), no. 1, 75–88. MR 1168982
- M. S. Baouendi, H. Jacobowitz, and F. Trèves, On the analyticity of CR mappings, Ann. of Math. (2) 122 (1985), no. 2, 365–400. MR 808223, DOI 10.2307/1971307
- M. S. Baouendi and Linda Preiss Rothschild, Germs of CR maps between real analytic hypersurfaces, Invent. Math. 93 (1988), no. 3, 481–500. MR 952280, DOI 10.1007/BF01410197
- Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342
- Bochnak, J. Analytic Functions in Banach Spaces. Studia Mathematica, T. XXXV.(1970).
- Jacek Bochnak and Józef Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), 77–112. MR 313811, DOI 10.4064/sm-39-1-77-112
- B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR 0212575
- Neelon, T. S. Holomorphic Extensions of CR Functions and CR Mappings Ph. D. thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901. (1993)
- J. Siciak, A characterization of analytic functions of $n$ real variables, Studia Math. 35 (1970), 293–297. MR 279263, DOI 10.4064/sm-35-3-293-297
- Tougeron, J. C., Ideaux de fonctions differnetiables, Springer-Verlag, 1972.
Bibliographic Information
- Tejinder S. Neelon
- Affiliation: College of Arts and Sciences, California State University San Marcos, San Marcos, California 92096
- Email: neelon@mailhost1.csusm.edu
- Received by editor(s): August 15, 1994
- Received by editor(s) in revised form: February 2, 1995, October 9, 1995, and March 18, 1996
- Communicated by: Eric Bedford
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2531-2535
- MSC (1991): Primary 14B12; Secondary 32B99
- DOI: https://doi.org/10.1090/S0002-9939-97-03894-X
- MathSciNet review: 1396991