A characterization of rings in which each partial order is contained in a total order
HTML articles powered by AMS MathViewer
- by Stuart A. Steinberg
- Proc. Amer. Math. Soc. 125 (1997), 2555-2558
- DOI: https://doi.org/10.1090/S0002-9939-97-03933-6
- PDF | Request permission
Abstract:
Rings in which each partial order can be extended to a total order are called $O^\ast$- rings by Fuchs. We characterize $O^\ast$- rings as subrings of algebras over the rationals that arise by freely adjoining an identity or one-sided identity to a rational vector space $N$ or by taking the direct sum of $N$ with an $O^\ast$- field. Each real quadratic extension of the rationals is an $O^\ast$- field.References
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Alain Bigard, Klaus Keimel, and Samuel Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin-New York, 1977 (French). MR 0552653
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- Melvin Henriksen and J. R. Isbell, Lattice-ordered rings and function rings, Pacific J. Math. 12 (1962), 533–565. MR 153709
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871
- V. Kreinovich, If a polynomial identity guarantees that every partial order on a ring can be extended, then this identity is true only for a zero-ring, Algebra Universalis 33 (1995), no. 2, 237–242. MR 1318988, DOI 10.1007/BF01190935
- Stuart A. Steinberg, Quotient rings of a class of lattice-ordered-rings, Canadian J. Math. 25 (1973), 627–645. MR 340145, DOI 10.4153/CJM-1973-064-3
Bibliographic Information
- Stuart A. Steinberg
- Affiliation: Department of Mathematics, The University of Toledo, Toledo, Ohio 43606-3390
- Email: ssteinb@uoft02.utoledo.edu
- Received by editor(s): April 9, 1996
- Communicated by: Lance W. Small
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2555-2558
- MSC (1991): Primary 06F25
- DOI: https://doi.org/10.1090/S0002-9939-97-03933-6
- MathSciNet review: 1401754