On the cobordism invariance of the index of Dirac operators
HTML articles powered by AMS MathViewer
- by Liviu I. Nicolaescu
- Proc. Amer. Math. Soc. 125 (1997), 2797-2801
- DOI: https://doi.org/10.1090/S0002-9939-97-03975-0
- PDF | Request permission
Abstract:
We describe a “tunneling” proof of the cobordism invariance of the index of Dirac operators.References
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI 10.1017/S0305004100049410
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720, DOI 10.1007/978-3-642-58088-8
- Bernhelm Booß-Bavnbek and Krzysztof P. Wojciechowski, Elliptic boundary problems for Dirac operators, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233386, DOI 10.1007/978-1-4612-0337-7
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- L. I. Nicolaescu : The Maslov index, the spectral flow and decompositions of manifolds, Duke Math. J., vol. 80 (1995), p. 485-533.
- L. I. Nicolaescu: Generalized symplectic geometries and the index of families of elliptic problems, (to appear in Mem. A.M.S.)
Bibliographic Information
- Liviu I. Nicolaescu
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
- Address at time of publication: Department of Mathematics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
- MR Author ID: 242770
- Email: liviu@math.lsa.umich.edu
- Received by editor(s): April 22, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2797-2801
- MSC (1991): Primary 58G10; Secondary 58G20
- DOI: https://doi.org/10.1090/S0002-9939-97-03975-0
- MathSciNet review: 1402879