Semi-free actions of zero-dimensional compact groups on Menger compacta
HTML articles powered by AMS MathViewer
- by Katsuro Sakai
- Proc. Amer. Math. Soc. 125 (1997), 2809-2813
- DOI: https://doi.org/10.1090/S0002-9939-97-04031-8
- PDF | Request permission
Abstract:
Let $\mu ^{n}$ be the $n$-dimensional universal Menger compactum, $X$ a $Z$-set in $\mu ^{n}$ and $G$ a metrizable zero-dimensional compact group with $e$ the unit. It is proved that there exists a semi-free $G$-action on $\mu ^{n}$ such that $X$ is the fixed point set of every $g \in G \smallsetminus \{e\}$. As a corollary, it follows that each compactum with $\dim \leqslant n$ can be embedded in $\mu ^{n}$ as the fixed point set of some semi-free $G$-action on $\mu ^{n}$.References
- Mladen Bestvina, Characterizing $k$-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988), no. 380, vi+110. MR 920964, DOI 10.1090/memo/0380
- Ryszard Engelking, Teoria wymiaru, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR 0482696
- A. N. Dranishnikov, Free actions of $0$-dimensional compact groups, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 1, 212–228 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 1, 217–232. MR 936531, DOI 10.1070/IM1989v032n01ABEH000755
- Dennis J. Garity, James P. Henderson, and David G. Wright, Menger spaces and inverse limits, Pacific J. Math. 131 (1988), no. 2, 249–259. MR 922217
- Yukihiro Kodama, On embeddings of spaces into ANR and shapes, J. Math. Soc. Japan 27 (1975), no. 4, 533–544. MR 400158, DOI 10.2969/jmsj/02740533
- L. S. Pontryagin, Topological groups, Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966. Translated from the second Russian edition by Arlen Brown. MR 0201557
- Katsuro Sakai, Free actions of zero-dimensional compact groups on Menger manifolds, Proc. Amer. Math. Soc. 122 (1994), no. 2, 647–648. MR 1249889, DOI 10.1090/S0002-9939-1994-1249889-4
- J.H.C. Whitehead, Simplicial spaces, nuclei, and $m$-groups, Proc. London Math. Soc. (2) 45 (1939), 243–327.
Bibliographic Information
- Katsuro Sakai
- Affiliation: Institute of Mathematics, University of Tsukuba, Tsukuba-city 305, Japan
- Email: sakaiktr@sakura.cc.tsukuba.ac.jp
- Received by editor(s): April 16, 1994
- Received by editor(s) in revised form: April 28, 1996
- Communicated by: James West
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2809-2813
- MSC (1991): Primary 54F15, 54H25, 54H15; Secondary 57S10, 22C05
- DOI: https://doi.org/10.1090/S0002-9939-97-04031-8
- MathSciNet review: 1415368