The $K$-theory of Gromov’s translation algebras and the amenability of discrete groups
HTML articles powered by AMS MathViewer
- by Gábor Elek
- Proc. Amer. Math. Soc. 125 (1997), 2551-2553
- DOI: https://doi.org/10.1090/S0002-9939-97-04056-2
- PDF | Request permission
Abstract:
We prove the following theorem. A finitely generated group $\Gamma$ is amenable if and only if $\boldsymbol {1}\neq \boldsymbol {0}$ in $K_0(T(\Gamma ))$, the algebraic $K$-theory group of its translation algebra.References
- Jonathan Block and Shmuel Weinberger, Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc. 5 (1992), no. 4, 907–918. MR 1145337, DOI 10.1090/S0894-0347-1992-1145337-X
- W. A. Deuber, M. Simonovits, and V. T. Sós, A note on paradoxical metric spaces, Studia Sci. Math. Hungar. 30 (1995), no. 1-2, 17–23. MR 1341564
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- John Roe, An index theorem on open manifolds. I, II, J. Differential Geom. 27 (1988), no. 1, 87–113, 115–136. MR 918459
- Paolo M. Soardi, Potential theory on infinite networks, Lecture Notes in Mathematics, vol. 1590, Springer-Verlag, Berlin, 1994. MR 1324344, DOI 10.1007/BFb0073995
Bibliographic Information
- Gábor Elek
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47906
- Address at time of publication: Mathematical Institute, Hungarian Academy of Science, P. O. Box 127, H-1364 Budapest, Hungary
- MR Author ID: 360750
- Email: elekgab@math.purdue.edu, elek@math-inst.hu
- Received by editor(s): April 9, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2551-2553
- MSC (1991): Primary 20F38
- DOI: https://doi.org/10.1090/S0002-9939-97-04056-2
- MathSciNet review: 1415585