Local automorphisms and derivations on $\mathcal {B}(H)$
HTML articles powered by AMS MathViewer
- by Peter Šemrl
- Proc. Amer. Math. Soc. 125 (1997), 2677-2680
- DOI: https://doi.org/10.1090/S0002-9939-97-04073-2
- PDF | Request permission
Abstract:
Let ${\mathcal {A}}$ be an algebra. A mapping $\theta :{\mathcal {A}}\longrightarrow {\mathcal {A}}$ is called a $2$-local automorphism if for every $a,b\in {\mathcal {A}}$ there is an automorphism $\theta _{a,b}:{\mathcal {A}}\longrightarrow {\mathcal {A}}$, depending on $a$ and $b$, such that $\theta _{a,b}(a)=\theta (a)$ and $\theta _{a,b}(b)=\theta (b)$ (no linearity, surjectivity or continuity of $\theta$ is assumed). Let $H$ be an infinite-dimensional separable Hilbert space, and let ${\mathcal {B}}(H)$ be the algebra of all linear bounded operators on $H$. Then every $2$-local automorphism $\theta :{\mathcal {B}}(H)\longrightarrow {\mathcal {B}}(H)$ is an automorphism. An analogous result is obtained for derivations.References
- C. Badea, The Gleason-Kahane-$\overset {{.} }{\text {Z}}$elazko theorem and Gel′fand theory without multiplication, preprint.
- Matej Brešar, Characterizations of derivations on some normed algebras with involution, J. Algebra 152 (1992), no. 2, 454–462. MR 1194314, DOI 10.1016/0021-8693(92)90043-L
- Matej Brešar and Peter emrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), no. 3, 483–496. MR 1222512, DOI 10.4153/CJM-1993-025-4
- Matej Brešar and Peter emrl, On local automorphisms and mappings that preserve idempotents, Studia Math. 113 (1995), no. 2, 101–108. MR 1318418, DOI 10.4064/sm-113-2-101-108
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Andrew M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171–172. MR 213878, DOI 10.1007/BF02788714
- Richard V. Kadison, Local derivations, J. Algebra 130 (1990), no. 2, 494–509. MR 1051316, DOI 10.1016/0021-8693(90)90095-6
- J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339–343. MR 226408, DOI 10.4064/sm-29-3-339-343
- S. Kowalski and Z. Słodkowski, A characterization of multiplicative linear functionals in Banach algebras, Studia Math. 67 (1980), no. 3, 215–223. MR 592387, DOI 10.4064/sm-67-3-215-223
- David R. Larson and Ahmed R. Sourour, Local derivations and local automorphisms of ${\scr B}(X)$, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 187–194. MR 1077437, DOI 10.1090/pspum/051.2/1077437
Bibliographic Information
- Peter Šemrl
- Affiliation: Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
- Email: peter.semrl@uni-mb.si
- Received by editor(s): April 19, 1996
- Additional Notes: This work was supported by a grant from the Ministry of Science of Slovenia
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2677-2680
- MSC (1991): Primary 47B47
- DOI: https://doi.org/10.1090/S0002-9939-97-04073-2
- MathSciNet review: 1415338