## Topologies on the ideal space of a Banach algebra and spectral synthesis

HTML articles powered by AMS MathViewer

- by Ferdinand Beckhoff
- Proc. Amer. Math. Soc.
**125**(1997), 2859-2866 - DOI: https://doi.org/10.1090/S0002-9939-97-03831-8
- PDF | Request permission

## Abstract:

Let the space $\operatorname {Id}(A)$ of closed two-sided ideals of a Banach algebra $A$ carry the weak topology. We consider the following property called normality (of the family of finite subsets of $A)$: if the net $(I_i)_i$ in $\operatorname {Id}(A)$ converges weakly to $I$, then for all $a\in A\backslash I$ we have $\liminf _i\|a+I_i\|>0$ (e.g. $C^*$-algebras, $L^1(G)$ with compact $G,\ldots )$. For a commutative Banach algebra normality is implied by spectral synthesis of all closed subsets of the Gelfand space $\Delta (A)$, the converse does not always hold, but it does under the following additional geometrical assumption: $\inf \{\|\varphi _1-\varphi _2\|;\varphi _1,\varphi _2 \in \Delta (A), \varphi _1\neq \varphi _2\}>0$.## References

- R. J. Archbold,
*Topologies for primal ideals*, J. London Math. Soc. (2)**36**(1987), no. 3, 524–542. MR**918643**, DOI 10.1112/jlms/s2-36.3.524 - F. Beckhoff,
*Topologies on the space of ideals of a Banach algebra*, Studia Mathematica 115 (2) (1995), 189–205. - Ferdinand Beckhoff,
*Topologies of compact families on the ideal space of a Banach algebra*, Studia Math.**118**(1996), no. 1, 63–75. MR**1373625**, DOI 10.4064/sm-118-1-63-75 - Arne Beurling,
*Construction and analysis of some convolution algebras*, Ann. Inst. Fourier (Grenoble)**14**(1964), no. fasc. 2, 1–32. MR**182839** - T. Ceauşu and D. Gaşpar,
*Generalized Lipschitz spaces as Banach algebras with spectral synthesis*, An. Univ. Timişoara Ser. Ştiinţ. Mat.**30**(1992), no. 2-3, 173–182 (1993). MR**1330746** - Jacques Dixmier,
*$C^*$-algebras*, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR**0458185** - Edwin Hewitt and Kenneth A. Ross,
*Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups*, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR**0262773** - L. G. Khanin,
*Spectral synthesis of ideals in algebras of functions having generalized derivatives*, Uspekhi Mat. Nauk**39**(1984), no. 2(236), 199–200 (Russian). MR**740037** - Simeon Ivanov (ed.),
*American Mathematical Society Translations. Series 2. Vol. 149*, American Mathematical Society Translations, Series 2, vol. 149, American Mathematical Society, Providence, RI, 1991. Thirteen papers in algebra, functional analysis, topology, and probability, translated from the Russian. MR**1137713**, DOI 10.1090/trans2/149 - Walter Rudin,
*Fourier analysis on groups*, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0152834** - Donald R. Sherbert,
*The structure of ideals and point derivations in Banach algebras of Lipschitz functions*, Trans. Amer. Math. Soc.**111**(1964), 240–272. MR**161177**, DOI 10.1090/S0002-9947-1964-0161177-1 - Douglas W. B. Somerset,
*Minimal primal ideals in Banach algebras*, Math. Proc. Cambridge Philos. Soc.**115**(1994), no. 1, 39–52. MR**1253281**, DOI 10.1017/S0305004100071905 - Charles Stegall,
*A proof of the principle of local reflexivity*, Proc. Amer. Math. Soc.**78**(1980), no. 1, 154–156. MR**548105**, DOI 10.1090/S0002-9939-1980-0548105-6 - M. H. Stone,
*Applications of the theory of Boolean rings to general topology*, Trans. Amer. Math. Soc. 41 (1937), 375–481.

## Bibliographic Information

**Ferdinand Beckhoff**- Affiliation: Mathematisches Institut der Universität Münster, Einsteinstraße 62, 48149 Münster, Germany
- Email: beckhof@math.uni-muenster.de
- Received by editor(s): October 3, 1995
- Received by editor(s) in revised form: March 19, 1996
- Communicated by: Theodore Gamelin
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 2859-2866 - MSC (1991): Primary 46J20
- DOI: https://doi.org/10.1090/S0002-9939-97-03831-8
- MathSciNet review: 1389504