## On duals of weakly acyclic $(LF)$-spaces

HTML articles powered by AMS MathViewer

- by Juan Carlos Díaz and Susanne Dierolf
- Proc. Amer. Math. Soc.
**125**(1997), 2897-2905 - DOI: https://doi.org/10.1090/S0002-9939-97-03913-0
- PDF | Request permission

## Abstract:

For countable inductive limits of Fréchet spaces ($(LF)$-spaces) the property of being weakly acyclic in the sense of Palamodov (or, equivalently, having condition $(M_{0})$ in the terminology of Retakh) is useful to avoid some important pathologies and in relation to the problem of well-located subspaces. In this note we consider if weak acyclicity is enough for a $(LF)$-space $E:= \operatorname {ind} E_{n}$ to ensure that its strong dual is canonically homeomorphic to the projective limit of the strong duals of the spaces $E_{n}$. First we give an elementary proof of a known result by Vogt and obtain that the answer to this question is positive if the steps $E_{n}$ are distinguished or weakly sequentially complete. Then we construct a weakly acyclic $(LF)$-space for which the answer is negative.## References

- Saunders MacLane and O. F. G. Schilling,
*Infinite number fields with Noether ideal theories*, Amer. J. Math.**61**(1939), 771–782. MR**19**, DOI 10.2307/2371335 - Klaus D. Bierstedt,
*An introduction to locally convex inductive limits*, Functional analysis and its applications (Nice, 1986) ICPAM Lecture Notes, World Sci. Publishing, Singapore, 1988, pp. 35–133. MR**979516**, DOI 10.1007/s13116-009-0018-2 - Klaus D. Bierstedt and José Bonet,
*A question of D. Vogt on $(\textrm {LF})$-spaces*, Arch. Math. (Basel)**61**(1993), no. 2, 170–172. MR**1230946**, DOI 10.1007/BF01207465 - José Bonet and Susanne Dierolf,
*A note on biduals of strict (LF)-spaces*, Results Math.**13**(1988), no. 1-2, 23–32. MR**928138**, DOI 10.1007/BF03323393 - José Bonet and Susanne Dierolf,
*On distinguished Fréchet spaces*, Progress in functional analysis (Peñíscola, 1990) North-Holland Math. Stud., vol. 170, North-Holland, Amsterdam, 1992, pp. 201–214. MR**1150747**, DOI 10.1016/S0304-0208(08)70320-7 - J. Bonet, S. Dierolf, and C. Fernández,
*On two classes of LF-spaces*, Portugal. Math.**49**(1992), no. 1, 109–130. MR**1165925** - Juan Carlos Díaz,
*Two problems of Valdivia on distinguished Fréchet spaces*, Manuscripta Math.**79**(1993), no. 3-4, 403–410. MR**1223031**, DOI 10.1007/BF02568354 - Susanne Dierolf,
*On two questions of A. Grothendieck*, Bull. Soc. Roy. Sci. Liège**50**(1981), no. 5-8, 282–286. MR**649939** - Klaus Floret,
*Some aspects of the theory of locally convex inductive limits*, Functional analysis: surveys and recent results, II (Proc. Second Conf. Functional Anal., Univ. Paderborn, Paderborn, 1979) North-Holland Math. Stud., vol. 38, North-Holland, Amsterdam-New York, 1980, pp. 205–237. MR**565407** - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3 - A. Grothendieck,
*Topological vector spaces*, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York-London-Paris, 1973. Translated from the French by Orlando Chaljub. MR**0372565** - John Horváth,
*Topological vector spaces and distributions. Vol. I*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR**0205028** - Gottfried Köthe,
*Topological vector spaces. I*, Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York, Inc., New York, 1969. Translated from the German by D. J. H. Garling. MR**0248498** - Reinhard Mennicken and Manfred Möller,
*Well located subspaces of LF-spaces*, Functional analysis, holomorphy and approximation theory (Rio de Janeiro, 1980) North-Holland Math. Stud., vol. 71, North-Holland, Amsterdam-New York, 1982, pp. 287–298. MR**691169** - S. Müller, S. Dierolf, and L. Frerick,
*On acyclic inductive sequences of locally convex spaces*, Proc. Roy. Irish Acad. Sect. A**94**(1994), no. 2, 153–159. MR**1369028** - Pedro Pérez Carreras and José Bonet,
*Barrelled locally convex spaces*, North-Holland Mathematics Studies, vol. 131, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 113. MR**880207** - M. Valdivia,
*Fréchet spaces with no subspaces isomorphic to $l_1$*, Math. Japon.**38**(1993), no. 3, 397–411. MR**1221006** - D. Vogt,
*Lectures on projective spectra of $(DF)$-spaces*, Seminar lectures, AG Funktionalanalysis, Düsseldorf, Wuppertal, 1987. - Dietmar Vogt,
*Regularity properties of (LF)-spaces*, Progress in functional analysis (Peñíscola, 1990) North-Holland Math. Stud., vol. 170, North-Holland, Amsterdam, 1992, pp. 57–84. MR**1150738**, DOI 10.1016/S0304-0208(08)70311-6 - J. Wengenroth,
*Retractive (LF)-spaces*, Dissertation, Universität, Trier, July 1995.

## Bibliographic Information

**Juan Carlos Díaz**- Affiliation: Departamento de Matemáticas, E.T.S.I.A.M., Universidad de Córdoba, 14004 Córdoba, Spain
- Email: ma1dialj@lucano.uco.es
**Susanne Dierolf**- Affiliation: FBIV-Mathematik, Universität Trier, D-54286 Trier, Germany
- Received by editor(s): October 6, 1995
- Received by editor(s) in revised form: April 24, 1996
- Additional Notes: The research of the first author was partially supported by the DGICYT/PB94-0441.
- Communicated by: Dale E. Alspach
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 2897-2905 - MSC (1991): Primary 46A13, 46A08
- DOI: https://doi.org/10.1090/S0002-9939-97-03913-0
- MathSciNet review: 1401734