COMBINATORIAL ASPECTS OF F_σ FILTERS WITH AN APPLICATION TO \mathcal{N}-SETS

CLAUDE LAFLAMME

(Communicated by Andreas R. Blass)

Abstract. We discuss F_σ filters and show that the minimum size of a filter base generating an undiagonalizable filter included in some F_σ filter is the better known bounded evasion number e_{ubd}. An application to \mathcal{N}-sets from trigonometric series is given by showing that if A is an \mathcal{N}-set and B has size less than e_{ubd}, then $A \cup B$ is again an \mathcal{N}-set.

1. Introduction

Our terminology is standard but we review the main concepts and notation. The set of natural numbers will be denoted by ω, $\mathcal{P}(\omega)$ denotes the collection of all its subsets. Given a set X, we write $[X]^\omega$ and $[X]^{<\omega}$ to denote the collection of infinite or finite subsets of X respectively; if we wish to be more specific, we write $[X]^n$ and $[X]^{\leq n}$ to denote the collection of subsets of size n or at most n respectively. We use the well known ‘almost inclusion’ ordering between members of $[\omega]^\omega$, i.e. $X \subset^* Y$ if $X \setminus Y$ is finite. We identify $\mathcal{P}(\omega)$ with ω^ω via characteristic functions. The space ω^ω is further equipped with the product topology of the discrete space $\{0, 1\}$; a basic neighbourhood is then a set of the form $\mathcal{O}_s = \{f \in \omega^\omega : s \subseteq f\}$ where $s \in <\omega^2$, the collection of finite binary sequences. The terms “nowhere dense”, “meager”, “Baire property” and “F_σ” all refer to this topology. We also write ω^ω to denote all functions on the natural numbers. The ordering of eventual dominance is defined by $f \leq^* g$ if $f(n) \leq g(n)$ for all but finitely many n. Without further mention, terminology with respect to families of functions all refer to this ordering; in particular a family $\mathcal{H} \subseteq \omega^\omega$ is said to be bounded if it is bounded by a single function in this ordering.

A filter is a collection of subsets of ω containing all cofinite sets and closed under finite intersections and supersets. It is called proper if it does not contain the empty set; thus the collection of cofinite sets is the smallest proper filter, it is called the Fréchet filter and is denoted by $\mathcal{F}r$. To avoid trivialities, we shall assume that all filters under discussion are proper. An infinite set $X \in [\omega]^\omega$ is said to zap (or diagonalize) a filter \mathcal{F} if $X \subseteq^* Y$ for each $Y \in \mathcal{F}$. Given a collection of sets
\(\mathcal{X} \subseteq [\omega]^\omega \), we denote by \(\langle \mathcal{X} \rangle \) the filter generated by \(\mathcal{X} \), that is, the smallest filter containing each member of \(\mathcal{X} \).

The Katětov ordering on filters is defined by
\[
\mathcal{F} \leq_K \mathcal{G} \text{ if } (\exists f \in {}^\omega \omega) \mathcal{G} \supseteq \{ f^{-1}\{X\} : X \in \mathcal{F} \}.
\]

The following Lemma from [9] combinatorially describes \(F_\sigma \) filters.

Lemma 1.1. Let \(\mathcal{F} \) be an \(F_\sigma \) filter and \(g \in {}^\omega \omega \). Then there is an increasing sequence of natural numbers \(\langle n_k : k \in \omega \rangle \) and sets \(a^k_i \subseteq [n_k, n_{k+1}) \), \(i < m_k \), such that
\[
\begin{align*}
(1) & \quad (\forall x \in [m_k]_{g(k)}) \bigcap_{i \in x} a^k_i \neq \emptyset, \\
(2) & \quad (\forall X \in \mathcal{F}) (\forall i \leq g(k)) (\exists i < m_k) a^k_i \subseteq X.
\end{align*}
\]

Proof. Let \(\mathcal{F} = \bigcup_n \mathcal{C}_n \) where each \(\mathcal{C}_n \) is closed and put \(\mathcal{C} = \{ X \cup n : n \in \omega \text{ and } X \in \mathcal{C}_n \} \). Then again \(\mathcal{C} \) is a closed set and every member of \(\mathcal{F} \) is almost equal to a member of \(\mathcal{C} \).

Let \(n_0 = 0 \) and having defined \(n_j \) for \(j \leq k \), choose an \(n_{k+1} > n_k \) such that
\[
(\forall X_0, X_1, \ldots, X_{g(k)-1} \in \mathcal{C}) \bigcap_{i < g(k)} X_i \cap [n_k, n_{k+1}) \neq \emptyset.
\]

The existence of such an \(n_{k+1} \) follows from the fact that \(\mathcal{C} \) is closed and that \(\mathcal{F} \) only contains infinite sets. Now enumerate \(\{ X \cap [n_k, n_{k+1}) : X \in \mathcal{C} \} \) as \(\{ a^k_i : i < m_k \} \) and this completes the proof. \(\Box \)

It is worth noticing that conversely, given a family \(\langle a^k_i : i < m_k \rangle : k \in \omega, g \rangle \) satisfying conditions (1) and (2) above, then the collection
\[
\{ X : (\forall k)(\exists i < m_k) a^k_i \subseteq X \}
\]
is a closed set generating an \(F_\sigma \) filter whenever \(\lim_n g(n) = \infty \).

We thank Andreas Blass, Jörg Brendle, Juris Steprāns and the referee for valuable comments on the paper.

2. \(F_\sigma \) Filters That Cannot Be Zapped

We first present a combinatorial description of the smallest size of a family of sets generating a filter that cannot be zapped but which is included in some \(F_\sigma \) filter. This is a variation of some well known cardinals; indeed the cardinal \(p \) is defined as the smallest size of a family of sets generating a filter that cannot be zapped and \(t \) is defined as the smallest size of a well ordered (under almost inclusion) family of sets generating a filter that cannot be zapped. It turns out that these cardinals have a substantial impact on the set theory of the reals.

Definition 2.1.
\[
f = \min\{ |\mathcal{X}| : \mathcal{X} \text{ generates a filter that cannot be zapped but which is included in some } \mathcal{F}_\sigma \text{ filter } \}.
\]

\[
f_1 = \min\{ |\mathcal{H}| : \mathcal{H} \subseteq {}^\omega \omega \text{ is bounded and for some } g \in {}^\omega \omega \text{ with } \lim_{n \to \infty} g(n) = \infty, \}
\]
\[
(\forall X \in [\omega]^\omega) (\forall s_n \in [\omega]^{\leq g(n)}) (\exists h \in \mathcal{H}) (\exists s_n \in X) h(n) \notin s_n, \}
\]

\[
f_2 = \min\{ |\mathcal{H}| : \mathcal{H} \subseteq {}^\omega \omega \text{ is bounded and for some } g \in {}^\omega \omega \text{ with } \lim_{n \to \infty} g(n) = \infty, \}
\]
\[
(\forall X \in [\omega]^\omega) (\forall \pi_n : \omega \to [\omega]^{\leq g(n)}) (\exists h \in \mathcal{H}) (\exists s_n \in X) h(n) \notin \pi_n(h \upharpoonright n). \}
\]
\[\epsilon_{ubd} = \min\{|H| : \mathcal{H} \subseteq {}^{<\omega} \omega \text{ is bounded and } \langle \forall X \in [\omega]^i (\forall \pi_n : i \omega \to \omega) (\exists h \in \mathcal{H}) (\exists^\infty n \in X) h(n) \neq \pi_n(h \upharpoonright n) \rangle \}
\]

The cardinal \(\epsilon_{ubd} \) is due to Brendle [5], and Brendle and Shelah [6]. Eisworth has shown (unpublished) that \(\epsilon_{ubd} \leq f \) and an argument very similar to that of Blass in [4] shows that \(f_1 \leq \epsilon_{ubd} \). We extend these results by showing that all four cardinals are equal.

Proposition 2.2. The four cardinals \(f, f_1, f_2 \) and \(\epsilon_{ubd} \) are equal.

Proof. For simplicity, we prove \(f_2 \leq f_1 \leq \epsilon_{ubd} \leq f_2 \leq f_1 \leq f \).

\(f_1 \leq \epsilon_{ubd} \): Let \(\mathcal{H} \subseteq {}^{<\omega} \omega \) be given of size \(|\mathcal{H}| < f_1 \), without loss of generality bounded everywhere by \(b \in {}^{<\omega} \omega \), and fix \(g \in {}^{<\omega} \omega \) such that \(\lim_n g(n) = \infty \).

Consider \(A_n = [b(n)]^{\leq s(n)} \) and for \(i < b(n) \), put \(a^i_n = \{x \in A_n : i \in x\} \). Notice that
\[(\forall x \in \mathcal{A}_n = [b(n)]^{\leq g(n)}) \cap_{i \in x} a^i_n \neq \emptyset. \]

Identify \(\bigcup_n A_n \) with \(\omega \), and form the filter \(\mathcal{F} \) generated by
\[\{\bigcup_n a^i_n : h \in \mathcal{H}\}. \]

Then \(\mathcal{F} \) is a filter generated by fewer than \(f \) sets and included in the \(F_\sigma \) filter \(\langle \langle a^i_n : i < b(n) \rangle : n \in \omega, g \rangle \). Therefore \(\mathcal{F} \) must be zapped, which means here that for some \(X \in [\omega]^\omega \) and \(x_n \in A_n \) for \(n \in X \), \(\{x_n : n \in X\} \) zaps \(\mathcal{F} \). In particular, for \(h \in \mathcal{H} \),
\[\{x_n : n \in X\} \subseteq^* \{a^i_n : n \in \omega\}, \]
and thus \(h(n) \in x_n \) for all but finitely many \(n \in X \).

\(f_1 \leq \epsilon_{ubd} \): Let \(\mathcal{H} \subseteq {}^{<\omega} \omega \) be given of size \(|\mathcal{H}| < f_1 \), without loss of generality bounded everywhere by \(b \in {}^{<\omega} \omega \). Partition \(\omega \) into consecutive intervals \((I_n = [a_n, a_n+1) : n \in \omega) \) such that \(a_{n+1} - a_n > n^2 \).

For \(h \in \mathcal{H} \), define \(h(n) = h \upharpoonright I_n \) and form \(\mathcal{H} = \{h : h \in \mathcal{H}\} \).

Identifying \(\prod_{a_n \leq i < a_{n+1}} b(i) \) with its cardinality, we have that \(\mathcal{H} \) is a bounded family of size \(|\mathcal{H}| < f_1 \). Therefore there are \(X \in [\omega]^\omega \) and \(s_n \in \prod_{a_n \leq i < a_{n+1}} b(i) \) such that
\[(\forall h \in \mathcal{H}) (\forall^\infty n \in X) \tilde{h}(n) \in s_n. \]

Now by the pigeonhole principle, there must be for each \(n \in X \) an \(i_n \in I_n \) such that
\[(*): (\forall t, t' \in s_n) t \upharpoonright i_n = t' \upharpoonright i_n \rightarrow t(i_n) = t'(i_n); \]
this is where we use the fact that \(|I_n| > n^2 \) while \(|s_n| \leq n \).

Let \(X = \{i_n : n \in X\} \) and define \(\pi_i : i^1 \omega \to \omega \) as follows. If \(i = i_n \in X \) and \(t \in i^1 \omega \) is such that \(t \upharpoonright [a_n, i) \) is an initial segment of a member \(t' \) of \(s_n \), then define \(\pi_i(t) = t'(i_n) \); this is well defined by the choice of \(i_n \). In all other cases define \(\pi_i(t) \) arbitrarily.

Now for \(h \in \mathcal{H} \), \(\tilde{h} \in s_n \) for all but finitely many \(n \in X \): for each such \(n \), \(i = i_n \in X \), \(h \upharpoonright [a_n, i) \) is an initial segment of a member of \(s_n \), namely \(\tilde{h}(n) = h \upharpoonright I_n \), and thus \(\pi_i(h \upharpoonright i) = h(i) \). This proves that \(f_1 \leq \epsilon_{ubd} \) as desired.

\(\epsilon_{ubd} \leq f_2 \): This inequality is trivial.

\(f_2 \leq f_1 \): Let \(\mathcal{H} \subseteq {}^{<\omega} \omega \) be given of size \(|\mathcal{H}| < f_2 \), without loss of generality bounded everywhere by \(b \in {}^{<\omega} \omega \), and fix \(g \in {}^{<\omega} \omega \) such that \(\lim_n g(n) = \infty \).
Choose integers $\delta_0 = 0 < \delta_1 < \ldots$ such that
\[(\forall n) \prod_{i \leq \delta_n} b(i) \times g(\delta_n) \leq g(\delta_{n+1}). \]

Now for $n \in \omega$, define
\[
\tilde{b}(n) = \prod_{\delta_n \leq i \leq \delta_{n+1}} b(i),
\]
which we identify with the cartesian product. For $h \in \mathcal{H}$, define
\[
\tilde{h}(n) = h \upharpoonright [\delta_n, \delta_{n+1}] \in \tilde{b}(n)
\]
and put $\tilde{\mathcal{H}} = \{\tilde{h}; h \in \mathcal{H}\}$, a bounded family of size less than f_2. Therefore
\[
(\exists X \in [\omega]^\omega)(\exists \pi_n : \omega \rightarrow [b(n)] \leq g(\delta_n))(\forall \tilde{h} \in \tilde{\mathcal{H}})(\forall^* n \in X) \tilde{h}(n) \in \pi_n(\tilde{h} \upharpoonright n).
\]
For $n \in X$, let
\[
s_{\delta_{n+1}} = \{u(\delta_{n+1}) : u \in \pi_n(t) \text{ for } t \in \prod_{i \leq n} \tilde{b}(i)\}.
\]
Then
\[
|s_{\delta_{n+1}}| \leq \prod_{i \leq \delta_n} b(i) \times g(\delta_n) \leq g(\delta_{n+1}),
\]
and so $s_{\delta_{n+1}} \in [b(\delta_{n+1})] \leq g(\delta_{n+1})$. Finally, given $h \in \mathcal{H}$, and thus $\tilde{h} \in \tilde{\mathcal{H}}$,
\[(\forall^* n \in X) \tilde{h}(n) \in \pi_n(\tilde{h} \upharpoonright n),\]
and so
\[(\forall^* n \in X) h(\delta_{n+1}) \in s_{\delta_{n+1}}.
\]

Since g was arbitrary, $|\tilde{\mathcal{H}}| < f_1$ and we conclude that $f_2 \leq f_1$.

$f_1 \leq f$: Let \mathcal{F} be a filter generated by $\langle A_\alpha : \alpha < \kappa \rangle$, $\kappa < f_1$, and included in the \mathcal{F}_σ filter $\langle \langle a_i^k : i < m_k \rangle : k \in \omega, g \rangle$.

For each $\alpha < \kappa$, define a function $f_\alpha \in [\omega]^\omega$ such that for all but finitely many k, $a_{f_\alpha(k)} \subseteq A_\alpha$.

Then $\{f_\alpha : \alpha < \kappa\}$ is a bounded family of size less than f_1, and therefore
\[(\exists X \in [\omega]^\omega)(\exists s_k \in [m_k] \leq g(k))(\forall^* \alpha)(\forall^* k \in X) f_\alpha(k) \in s_k.
\]
We conclude that $\bigcup_{k \in X} \bigcap_{i \in s_k} a_i^k$ zaps the filter \mathcal{F}.

We conclude this section by giving a small perspective on these cardinals (see [12] for a description of cardinals not defined here). If one removes the boundedness restriction on \mathcal{H}, the cardinal ε_{ubd} becomes the evasion number, known as ε ([4]); clearly $\varepsilon \leq \varepsilon_{ubd}$ and it has been proved consistent by Shelah that $\varepsilon < \varepsilon_{ubd}$ [6].

Removing the boundedness restriction on \mathcal{H} and fixing $X = \omega$, the cardinal f_1 is the additivity of measure, $\text{add}(\mathcal{N})$ ([1]); keeping the boundedness and using $X = \omega$ yields the so-called transitive additivity of measure (due to Pawlikowski), and finally removing the boundedness condition but keeping X arbitrary yields the cardinal ε (see [4]). Thus we have $\text{add}(\mathcal{N}) \leq \varepsilon \leq \varepsilon_{ubd} = 1$, and ε, $\text{trans} - \text{add}(\mathcal{N}) \leq \varepsilon_{ubd}$.

For upper bounds, it is already known that ε_{ubd} is less than or equal to the uniformity of the null and meager ideals; these are easy to prove through the cardinal f_1.

It is also known that the cardinal ε_{ubd} is not provably equal to any of the standard cardinals \mathfrak{b}, \mathfrak{d}, \mathfrak{t} or additivity, uniformity, cofinality and covering of the null or meager ideals (see [9], [11], [6]).
A different but provable lower bound however for the number \(\varepsilon_{ubd} \) (and thus \(f \)) is \(t \); the idea of the proof is from [2]. We shall use the cardinal \(b \), the minimum size of an unbounded family in \(\omega^\omega \), and the well-known inequality \(t \leq b \) (see [12]).

Brendle remarks that from \(t \leq \varepsilon_{ubd} \) and his result with Shelah ([5, 6]) that \(se = \min\{t, b\} = \min\{\varepsilon_{ubd}, b\} \), one concludes that \(t \leq se \), thus improving Blass’ result \(p \leq se \) [4]. Brendle also noticed that this can be proved directly from the following result as any family of functions of size less than \(t \) is necessarily bounded.

Proposition 2.3. \(t \leq \varepsilon_{ubd} \leq 2^{\aleph_0} \).

Proof. We show that \(t \leq f_1 \). Let \(\mathcal{H} = \langle h_\alpha : \alpha < \kappa \rangle \) be a family of size \(\kappa < t \), bounded everywhere by \(b \in \omega^\omega \), and fix \(g \in \omega^\omega \) such that \(\lim_n g(n) = \infty \).

We construct a sequence \(\langle \phi_\alpha : \alpha \leq \kappa \rangle \) such that:

1. \(\phi_\alpha : \text{dom}(\phi_\alpha) \to [\omega \leftarrow \omega] \),
2. \(\text{dom}(\phi_\alpha) \subseteq [\omega \leftarrow \omega] \),
3. \(\lim_{k \in \text{dom}(\phi_\alpha)} g(k) - |\phi_\alpha(k)| = +\infty \),
4. \((\forall \beta < \alpha) \text{dom}(\phi_\beta) \subseteq^* \text{dom}(\phi_\alpha) \), and \((\forall \beta < \alpha) k \in \text{dom}(\phi_\alpha) \implies \phi_\beta(k) \subseteq \phi_\alpha(k) \),
5. \((\forall \beta < \alpha) (\forall k \in \text{dom}(\phi_\beta)) \text{dom}(\phi_k) \subseteq \phi_\alpha(k) \).

Once we have obtained \(\phi_\kappa \), then clearly \(s_k = \phi_\kappa(k) \) for \(k \in \text{dom}(\phi_\kappa) \) is as desired. Now to construct the sequence, assume that we already have \(\langle \phi_\beta : \beta < \alpha \rangle \) for some \(\alpha \leq \kappa \).

If \(\alpha = \beta + 1 \) is a successor ordinal, define \(\phi_\alpha(k) = \phi_\beta(k) \cup \{h_\alpha(k)\} \) for \(k \in \text{dom}(\phi_\beta) \) such that \(|\phi_\beta(k)| < g(k) \).

For \(\alpha \) a limit ordinal, first choose a \(\tilde{g} \in \omega^\omega \) such that \(\lim_k g(k) - \tilde{g}(k) = \infty \) and \((\forall \beta < \alpha) (\forall k \in \text{dom}(\phi_\beta)) |\phi_\beta(k)| \leq \tilde{g}(k) \).

This is possible as \(\alpha \leq \kappa < t \leq b \); I am not sure where this idea comes from.

Now for \(\beta < \alpha \) define

\[
A_\beta = \{ (k, x) : k \in \text{dom}(\phi_\beta) \text{ and } \phi_\beta(k) \subseteq x \subseteq b(k) \text{ and } |x| \leq \tilde{g}(k) \}.
\]

Clearly \(\beta < \gamma < \alpha \implies A_\gamma \subseteq^* A_\beta \) and, identifying \(A_0 \) with \(\omega \) and as \(\alpha < t \), we can find some infinite \(A_\alpha \subseteq^* A_\beta \) for each \(\beta < \alpha \). Finally we put

\[
\phi_\alpha(k) = \text{any } x \text{ such that } (k, x) \in A_\alpha
\]

and undefined if there is no such \(x \). Clearly \(\phi_\alpha \) is as desired. \(\square \)

3. Trigonometric series and \(\mathcal{N} \)-sets

In this section we prove that if \(A \) is an \(\mathcal{N} \)-set and \(|B| < \varepsilon_{ubd} \), then \(A \cup B \) is also an \(\mathcal{N} \)-set. A similar result was earlier proved with \(p \) in the role of \(\varepsilon_{ubd} \) in [7] on which we modeled our proof, and then with \(t \) in [2] on which we modeled the above proof of \(t \leq \varepsilon_{ubd} \).

It is known that the collection of \(\mathcal{N} \)-sets is not in general closed under unions; in [3] two \(\mathcal{N} \)-sets of cardinality \(\varepsilon \) are constructed whose union is not an \(\mathcal{N} \)-set.

Definition 3.1. A set \(A \subseteq \mathbb{R} \) is called an \(\mathcal{N} \)-set ([3]) if there is a sequence of non-negative reals \(\langle a_n : n \in \omega \rangle \) such that:

1. \(\sum_{n=0}^{\infty} a_n = +\infty \),
2. \((\forall a \in A) \sum_{n=0}^{\infty} a_n |\sin \pi na| < \infty \).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proposition 3.2. If \(A \subseteq \mathbb{R} \) is an \(\mathcal{N} \)-set and \(|B| < \varepsilon_{abd} \), then \(A \cup B \) is also an \(\mathcal{N} \)-set.

Proof. Fix a sequence of nonnegative reals \(\langle a_n : n \in \omega \rangle \) as in the definition for the \(\mathcal{N} \)-set \(A \). As is now standard procedure (see [7] and [2]), we put \(s_n = \sum_{i=0}^n a_i \) and \(b_n = a_n/s_n \); then again \(\sum_{n=0}^\infty b_n = +\infty \).

As in [3], find an unbounded, nondecreasing sequence of natural numbers \(\langle q_n : n \in \omega \rangle \) such that

\[
\sum_{n=0}^\infty a_n/s_n^{1+\frac{1}{q_n^2}} < \infty;
\]

as we may replace the sequence \(\langle q_n : n \in \omega \rangle \) by any slower but unbounded and monotonic sequence, we may as well assume that \(q_{\pi_n} \leq n \). Let \(\varepsilon_n = s_n^{-1/q_n} \).

Choose an increasing sequence of natural numbers \(\langle \pi_n : n \in \omega \rangle \) such that

\[
(1) \quad (\forall k) \sum_{i=\pi_n}^{\pi_{n+1}-1} b_i \geq 1,
(2) \quad (\forall m)(\forall n \geq \pi_n) q_m \geq n^2.
\]

Finally for \(T \subseteq B \) and \(m \in \omega \), define

\[a^n_T = \{ k \in \omega : 0 \leq k \leq s_m \text{ and } (\forall t \in T) |\sin \pi km| \leq 2\pi \varepsilon_m \}, \]

and for each \(n, m \geq \pi_n \) and \(|T| \leq q_{\pi_n}/n \), put

\[b^n_T = \{ a^n_T : T \subseteq T' \text{ and } |T'| \leq q_{\pi_n} \}. \]

The following claim is from standard number theory and follows from the pigeonhole principle.

Claim 3.3. If \(T \subseteq B \) and \(|T| \leq q_{\pi_n} \), then \(a^n_T \neq \emptyset \) for any \(m \geq \pi_n \).

Proof. Fix \(n, m \) and we let \(T = \{ t_i : i < |T| \} \). Define a map

\[c : (1/\varepsilon_m)^{|T|} + 1 \rightarrow \prod_{i \in |T|} 1/\varepsilon_m \]

by \(c(j) = (\ell_0, \cdots, \ell_{|T|-1}) \) if

\[(\forall i < |T|)(\exists p \in \omega) p + \ell_i \varepsilon_m \leq j m \ell_i < p + (\ell_i + 1) \varepsilon_m. \]

There must then be two integers \(j_1 < j_2 < (1/\varepsilon_m)^{|T|} + 1 \) such that \(c(j_1) = c(j_2) \) and let \(k = j_2 - j_1 \).

Then \(k \leq (1/\varepsilon_m)^{|T|} \leq (1/\varepsilon_m)^{q_{\pi_n}} \leq (1/\varepsilon_m)^{q_m} = s_m \). Now using \([x] \) to denote the distance from \(x \) to the nearest integer, we have, for \(t \in T \),

\[|\sin \pi km| \leq \pi[km] \leq 2\pi \varepsilon_m \]

as desired. \(\square \)

Therefore \(a^n_{T_i} \neq \emptyset \) for each \(a^n_{T_i} \in b^n_{T_i} \) and of course, if \(T_i \subseteq B, i < n, \) and each \(|T_i| \leq q_{\pi_n}/n, \) then \(\bigcap_{i<n} b^n_{T_i} \neq \emptyset \) whenever \(m \geq \pi_n \).

Now consider the set

\[W = \{ \langle a^n_{T_m} : \pi_n \leq m < \pi_{n+1} \rangle : n \in \omega \text{ and } |T_m| \leq q_{\pi_n} \}, \]

which we may identify with \(\omega \) since it is a countable set, and the filter

\[\mathcal{G} = \{ (X \subseteq \omega) : (\forall \pi_n \leq m < \pi_{n+1}) (\exists T_m \subseteq B) |T_m| \leq q_{\pi_n}/n \text{ and } \prod_{\pi_n \leq m < \pi_{n+1}} b^n_{T_m} \subseteq X \}. \]
Then G is an F_{σ} filter as it is generated by a closed set and contains the filter
\[F = \{ \{ X \subseteq W : (\exists T \subseteq B) |T| < \infty \} \mid |T| \leq q_{\pi_n}/n, \prod_{\pi_n \leq \pi_{n+1}} b_T^m \subseteq X \}. \]

As F is generated by fewer than $\epsilon_{abd} = f$ sets, it must be diagonalized by an infinite set $X \subseteq W$ which, without loss of generality, is of the form
\[X = \{ \langle a_{T_m}^m : \pi_{n_1} \leq m < \pi_{n_{1+1}} \rangle : \ell \in \omega \} \]
where $|T_m| \leq q_{\pi_{n_\ell}}$ and $n_\ell < n_{\ell+1}$. For each ℓ and $\pi_{n_\ell} \leq m < \pi_{n_{\ell+1}}$, pick $k_m \in a_{T_m}^m$.

Now clearly $\sum_\ell \sum_{\pi_{n_\ell} \leq m < \pi_{n_{\ell+1}}} b_m = \infty$ and it remains to show that
\[\sum_\ell \sum_{\pi_{n_\ell} \leq m < \pi_{n_{\ell+1}}} b_m |\sin mk_m \pi x| < \infty \]
for each $x \in A \cup B$. For $x \in A$,
\[b_m |\sin mk_m \pi x| \leq b_m k_m |\sin m \pi x| \leq b_m s_m |\sin m \pi x| = a_m |\sin m \pi x|. \]
Finally for $x \in B$, let $T = \{ x \}$ and thus for all but finitely many ℓ, for all $\pi_{n_\ell} \leq m < \pi_{n_{\ell+1}}$,
\[|\sin mk_m \pi x| \leq 2\pi \epsilon_m \]
and therefore
\[b_m |\sin mk_m \pi x| \leq 2\pi a_m / s_m^{1+1/q_m}. \]
This completes the proof. \qed

References

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4
E-mail address: laflamme@acs.ucalgary.ca