An improved estimate for the highest Lyapunov exponent in the method of freezing
HTML articles powered by AMS MathViewer
- by G. I. Eleutheriadis
- Proc. Amer. Math. Soc. 125 (1997), 2931-2937
- DOI: https://doi.org/10.1090/S0002-9939-97-03952-X
- PDF | Request permission
Abstract:
Let $\dot x=A(t)x$ and $\lambda _k(t)$ be the eigenvalues of the matrix $A(t)$. The main result of the Method of Freezing states that if $\sup _J \|A(t)\|\leq M$, $\sup _J\max _{1\leq k\leq n}\mathrm {Re} \lambda _k(t)\leq \rho$ and $\sup _J(\|A(t)-A(s)\|/|t-s|)\leq \delta$, then \[ x_{\max }\leq \rho +2M\lambda _\delta ,\] for the highest exponent $x_{\max }$ of the system, where \[ \lambda _\delta =\left (\frac {C_n\delta }{4M^2}\right )^{\frac {1}{n+1}}.\] The previous best known value $C_n=\frac {n(n+1)}{2}$ and the substantially smaller values of $C_n$ are reduced to the still smaller value.References
- V. M. Alekseev, The asymptotic behaviour of solutions of slightly non-linear systems of ordinary differential equations, Soviet Math. Dokl. 1 (1960), 1035–1038. MR 0114983
- V. M. Alekseev and R. È. Vinograd, On the method of “freezing”, Vestnik Moskov. Univ. Ser. I Mat. Meh. 21 (1966), no. 5, 30–35 (Russian, with English summary). MR 0200572
- B. F. Bylov, R. È. Vinograd, D. M. Grobman, and V. V. Nemyckiĭ, Teoriya pokazateleĭ Lyapunova i ee prilozheniya k voprosam ustoĭchivosti, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0206415
- Ju. L. Dalec′kiĭ and M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Translations of Mathematical Monographs, Vol. 43, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by S. Smith. MR 0352639
- Ju. I. Elefteriadi, Attainability of the estimate of the highest exponent in the freezing method in the case $n>2$, Differencial′nye Uravnenija 10 (1974), 1379–1386, 1583 (Russian). MR 0361299
- I. M. Glazman and Yu. I. Lyubich, Konechnomernyĭ lineĭnyĭ analiz v zadachakh, Izdat. “Nauka”, Moscow, 1969 (Russian). MR 0354715
- N. A. Izobov, Cases of sharpening and the attainability of an estimate of the highest exponent in the method of freezing, Differencial′nye Uravnenija 7 (1971), 1179–1191, 1339–1340 (Russian). MR 0293197
- N. A. Izobov, Refinement of bounds for highest exponents in the freezing method, Differentsial′nye Uravneniya 19 (1983), no. 8, 1454–1456 (Russian). MR 714814
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Robert E. Vinograd, An improved estimate in the method of freezing, Proc. Amer. Math. Soc. 89 (1983), no. 1, 125–129. MR 706524, DOI 10.1090/S0002-9939-1983-0706524-1
- J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422
- Reginald P. Tewarson, Sparse matrices, Mathematics in Science and Engineering, Vol. 99, Academic Press, New York-London, 1973. MR 0362875
Bibliographic Information
- G. I. Eleutheriadis
- Affiliation: Ektenepol, 14/3, 67100, Xanthi, Greece
- Received by editor(s): May 1, 1996
- Communicated by: Hal L. Smith
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2931-2937
- MSC (1991): Primary 34D08
- DOI: https://doi.org/10.1090/S0002-9939-97-03952-X
- MathSciNet review: 1403124