Property (M) and the weak fixed point property
HTML articles powered by AMS MathViewer
- by Jesús Garcia Falset and Brailey Sims
- Proc. Amer. Math. Soc. 125 (1997), 2891-2896
- DOI: https://doi.org/10.1090/S0002-9939-97-03953-1
- PDF | Request permission
Abstract:
It is shown that in Banach spaces with the property (M) of Kalton, nonexpansive self mappings of nonempty weakly compact convex sets necessarily have fixed points. The stability of this conclusion under renormings is examined and conditions for such spaces to have weak normal structure are considered.References
- D. van Dulst and Brailey Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), Banach space theory and its applications (Bucharest, 1981) Lecture Notes in Math., vol. 991, Springer, Berlin-New York, 1983, pp. 35–43. MR 714171
- G. A. Edgar and R. F. Wheeler, Topological properties of Banach spaces, Pacific J. Math. 115 (1984), no. 2, 317–350. MR 765190
- Kazimierz Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 1074005, DOI 10.1017/CBO9780511526152
- A. Jiménez-Melado and E. Llorens Fuster, Stability of the fixed point property for nonexpansive mappings, Houston J. Math. 18 (1992), no. 2, 251–257. MR 1164107
- N. J. Kalton, $M$-ideals of compact operators, Illinois J. Math. 37 (1993), no. 1, 147–169. MR 1193134
- Kalton, N. J. and Werner D., [1993], Property (M), M-ideals and almost isometric structure of Banach spaces, preprint, pp47.
- Åsvald Lima, On $M$-ideals and best approximation, Indiana Univ. Math. J. 31 (1982), no. 1, 27–36. MR 642613, DOI 10.1512/iumj.1982.31.31004
- Pei-Kee Lin, Unconditional bases and fixed points of nonexpansive mappings, Pacific J. Math. 116 (1985), no. 1, 69–76. MR 769823
- B. Maurey, Points fixes des contractions de certains faiblement compacts de $L^{1}$, Seminar on Functional Analysis, 1980–1981, École Polytech., Palaiseau, 1981, pp. Exp. No. VIII, 19 (French). MR 659309
- Sims, B., [1982], Fixed points of nonexpansive maps on weak and weak$^{*}$ compact convex sets, Queen’s University seminar notes, pp34.
- Brailey Sims, Orthogonality and fixed points of nonexpansive maps, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 20, Austral. Nat. Univ., Canberra, 1988, pp. 178–186. MR 1009604
- Brailey Sims, The weak${}^\ast$ Karlovitz lemma for dual lattices, Bull. Austral. Math. Soc. 45 (1992), no. 1, 171–176. MR 1147256, DOI 10.1017/S0004972700037126
Bibliographic Information
- Jesús Garcia Falset
- Affiliation: Departament d’Anàlisi Matematica, Facultat de Matematiques, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain
- Email: Jesus.Garcia@uv.es
- Brailey Sims
- Affiliation: Department of Mathematics, The University of Newcastle, New South Wales 2308, Australia
- Email: bsims@frey.newcastle.edu.au
- Received by editor(s): January 3, 1996
- Received by editor(s) in revised form: April 19, 1996
- Additional Notes: Partially supported by grant DGICYT PB-1177-c02-02 and a travel grant from the University of Newcastle.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2891-2896
- MSC (1991): Primary 47H09, 47H10, 46B20
- DOI: https://doi.org/10.1090/S0002-9939-97-03953-1
- MathSciNet review: 1403125