## Integration of the intertwining operator for $h$-harmonic polynomials associated to reflection groups

HTML articles powered by AMS MathViewer

- by Yuan Xu
- Proc. Amer. Math. Soc.
**125**(1997), 2963-2973 - DOI: https://doi.org/10.1090/S0002-9939-97-03986-5
- PDF | Request permission

## Abstract:

Let $V$ be the intertwining operator with respect to the reflection invariant measure $h_{\alpha }^{2} d\omega$ on the unit sphere $S^{d-1}$ in Dunkl’s theory on spherical $h$-harmonics associated with reflection groups. Although a closed form of $V$ is unknown in general, we prove that \begin{equation*} \int _{S^{d-1}} Vf(\mathbf {y}) h_{\alpha }^{2}(\mathbf {y}) d\omega = A_{\alpha }\int _{B^{d}} f(\mathbf {x})(1-|\mathbf {x}|^{2})^{|\alpha |_{1} -1} d\mathbf {x}, \end{equation*} where $B^{d}$ is the unit ball of $\mathbb {R}^{d}$ and $A_{\alpha }$ is a constant. The result is used to show that the expansion of a continuous function as Fourier series in $h$-harmonics with respect to $h_{\alpha }^{2} d\omega$ is uniformly Cesáro $(C, \delta )$ summable on the sphere if $\delta > |\alpha |_{1} + (d-2)/2$, provided that the intertwining operator is positive.## References

- Richard Askey,
*Orthogonal polynomials and special functions*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. MR**0481145** - Charles F. Dunkl,
*Reflection groups and orthogonal polynomials on the sphere*, Math. Z.**197**(1988), no. 1, 33–60. MR**917849**, DOI 10.1007/BF01161629 - Charles F. Dunkl,
*Differential-difference operators associated to reflection groups*, Trans. Amer. Math. Soc.**311**(1989), no. 1, 167–183. MR**951883**, DOI 10.1090/S0002-9947-1989-0951883-8 - Charles F. Dunkl,
*Integral kernels with reflection group invariance*, Canad. J. Math.**43**(1991), no. 6, 1213–1227. MR**1145585**, DOI 10.4153/CJM-1991-069-8 - C. Dunkl,
*Intertwining operators associated to the group $S_{3}$*, Trans. Amer. Math. Soc.**347**(1995), 3347-3374. - Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi,
*Higher transcendental functions. Vol. I*, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman; With a preface by Mina Rees; With a foreword by E. C. Watson; Reprint of the 1953 original. MR**698779** - G. J. Heckman,
*Hypergeometric and Spherical Functions*, Harmonic Analysis and Special Functions on Symmetric Spaces, Academic Press, San Diego, 1994. - I. G. Macdonald,
*Some conjectures for root systems*, SIAM J. Math. Anal.**13**(1982), no. 6, 988–1007. MR**674768**, DOI 10.1137/0513070 - E. M. Opdam,
*Some applications of hypergeometric shift operators*, Invent. Math.**98**(1989), no. 1, 1–18. MR**1010152**, DOI 10.1007/BF01388841 - H. Szegő,
*Orthogonal polynomials*, 4th ed., Amer. Math. Soc. Colloq. Publ. vol.23, Providence, RI, 1975. - Yuan Xu,
*On multivariate orthogonal polynomials*, SIAM J. Math. Anal.**24**(1993), no. 3, 783–794. MR**1215438**, DOI 10.1137/0524048 - Y. Xu,
*Summability of Fourier orthogonal series for Jacobi weight on a ball in $\mathbb {R}^{d}$*(to appear). - Y. Xu,
*Orthogonal polynomials for a family of product weight functions on the spheres*, Canadian J. Math.**49**(1997), 175–192. - A. Zygmund,
*Trigonometric series: Vols. I, II*, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR**0236587**

## Bibliographic Information

**Yuan Xu**- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
- MR Author ID: 227532
- Email: yuan@math.uoregon.edu
- Received by editor(s): May 7, 1996
- Additional Notes: Supported by the National Science Foundation under Grant DMS-9500532
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 2963-2973 - MSC (1991): Primary 33C50, 33C45, 42C10
- DOI: https://doi.org/10.1090/S0002-9939-97-03986-5
- MathSciNet review: 1402890