The AR-property for Roberts’ example of a compact convex set with no extreme points Part 2: Application to the example
HTML articles powered by AMS MathViewer
- by Nguyen To Nhu, Jose M. R. Sanjurjo and Tran Van An
- Proc. Amer. Math. Soc. 125 (1997), 3089-3098
- DOI: https://doi.org/10.1090/S0002-9939-97-04021-5
- PDF | Request permission
Abstract:
In this second part of our paper, we apply the result of Part 1 to show that the compact convex set with no extreme points, constructed by Roberts (1977), is an AR.References
- C. Bessaga and T. Dobrowolski, Some open problems on the border of infinite dimensional topology and functional analysis, Proceedings of the international conference on geometric topology, PWN, Warszawa 1980.
- Doug Curtis, Tadeusz Dobrowolski, and Jerzy Mogilski, Some applications of the topological characterizations of the sigma-compact spaces $l^{2}_{f}$ and $\Sigma$, Trans. Amer. Math. Soc. 284 (1984), no. 2, 837–846. MR 743748, DOI 10.1090/S0002-9947-1984-0743748-7
- Jan van Mill and George M. Reed (eds.), Open problems in topology, North-Holland Publishing Co., Amsterdam, 1990. MR 1078636
- Open problems in infinite-dimensional topology, Topology Proc. 4 (1979), no. 1, 287–338 (1980). MR 583711
- Victor Klee, Shrinkable neighborhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), 281–285. MR 131149, DOI 10.1007/BF01360762
- Victor Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286–296. MR 131150, DOI 10.1007/BF01360763
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- N. J. Kalton and N. T. Peck, A re-examination of the Roberts example of a compact convex set without extreme points, Math. Ann. 253 (1980), no. 2, 89–101. MR 597819, DOI 10.1007/BF01578905
- N. J. Kalton, N. T. Peck, and James W. Roberts, An $F$-space sampler, London Mathematical Society Lecture Note Series, vol. 89, Cambridge University Press, Cambridge, 1984. MR 808777, DOI 10.1017/CBO9780511662447
- Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), no. 3, 243–254. MR 774515, DOI 10.4064/fm-124-3-243-254
- Nguyen To Nhu, The finite dimensional approximation property and the AR-property in needle point spaces, J. London Math. Soc. (to appear).
- Nguyen To Nhu and Katsuro Sakai, The compact neighborhood extension property and local equi-connectedness, Proc. Amer. Math. Soc. 121 (1994), no. 1, 259–265. MR 1232141, DOI 10.1090/S0002-9939-1994-1232141-0
- Nguyen To Nhu and Le Hoang Tri, Every needle point space contains a compact convex AR-set with no extreme points, Proc. Amer. Math. Soc. 120 (1994), no. 4, 1261–1265. MR 1152989, DOI 10.1090/S0002-9939-1994-1152989-0
- Nguyen To Nhu and Le Hoang Tri, No Roberts space is a counterexample to Schauder’s conjecture, Topology 33 (1994), no. 2, 371–378. MR 1273789, DOI 10.1016/0040-9383(94)90018-3
- James W. Roberts, A compact convex set with no extreme points, Studia Math. 60 (1977), no. 3, 255–266. MR 470851, DOI 10.4064/sm-60-3-255-266
- J. W. Roberts, Pathological compact convex sets in the spaces $L_p,\ 0\leq p<1$, The Altgeld Book, University of Illinois, 1976.
- Stefan Rolewicz, Metric linear spaces, Monografie Matematyczne, Tom 56. [Mathematical Monographs, Vol. 56], PWN—Polish Scientific Publishers, Warsaw, 1972. MR 0438074
Bibliographic Information
- Nguyen To Nhu
- Affiliation: Institute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam
- Address at time of publication: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003-8001
- Email: nnguyen@nmsu.edu
- Jose M. R. Sanjurjo
- Affiliation: Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense de Madrid, 280 40 Madrid, Spain
- Email: sanjurjo@sungt1.mat.ucm.es
- Tran Van An
- Affiliation: Department of Mathematics, University of Vinh, Nghe An, Vietnam
- Received by editor(s): December 17, 1992
- Received by editor(s) in revised form: April 1, 1996
- Additional Notes: The first author was supported by the Complutense University of Madrid.
- Communicated by: James West
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3089-3098
- MSC (1991): Primary 54C55; Secondary 54D45
- DOI: https://doi.org/10.1090/S0002-9939-97-04021-5
- MathSciNet review: 1415358