Milnor fibrations of lattice-isotopic arrangements
HTML articles powered by AMS MathViewer
- by Richard Randell
- Proc. Amer. Math. Soc. 125 (1997), 3003-3009
- DOI: https://doi.org/10.1090/S0002-9939-97-04027-6
- PDF | Request permission
Abstract:
We show that the associated Milnor fibrations are equivalent in a smooth family of arrangements with constant intersection lattice.References
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- J. Mather, Notes on topological stability, Harvard University, 1970, mimeo-graphed notes.
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189. MR 558866, DOI 10.1007/BF01392549
- Richard Randell, Lattice-isotopic arrangements are topologically isomorphic, Proc. Amer. Math. Soc. 107 (1989), no. 2, 555–559. MR 984812, DOI 10.1090/S0002-9939-1989-0984812-7
- G. Rybnikov, On the fundamental group of a complex hyperplane arrangement, preprint, 1993.
- Hassler Whitney, Tangents to an analytic variety, Ann. of Math. (2) 81 (1965), 496–549. MR 192520, DOI 10.2307/1970400
Bibliographic Information
- Richard Randell
- Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242-0001
- Email: randell@math.uiowa.edu
- Received by editor(s): April 8, 1996
- Communicated by: Ronald A. Fintushel
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3003-3009
- MSC (1991): Primary 52B30; Secondary 57R52
- DOI: https://doi.org/10.1090/S0002-9939-97-04027-6
- MathSciNet review: 1415364