Calibrated thin $\boldsymbol {\Pi }_{\mathbf 1}^{\mathbf 1}$ $\sigma$-ideals are $\boldsymbol G_\delta$
HTML articles powered by AMS MathViewer
- by Miroslav Zelený
- Proc. Amer. Math. Soc. 125 (1997), 3027-3032
- DOI: https://doi.org/10.1090/S0002-9939-97-04041-0
- PDF | Request permission
Abstract:
Let $E$ be a compact metric space, and let $I \subset \mathcal {K} (E)$ be a calibrated thin $\boldsymbol \Pi _{\mathbf {1}}^{\mathbf {1}}$ $\sigma$-ideal. Then $I$ is $\boldsymbol G_{\delta }$. This solves an open problem, which was posed by Kechris, Louveau and Woodin. Using our result we obtain a new proof of Kaufman’s theorem concerning $U$-sets and $U_{0}$-sets.References
- G. Debs and J. Saint-Raymond, Ensembles boréliens d’unicité et d’unicité au sens large, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 3, 217–239 (French, with English summary). MR 916281
- Alexander S. Kechris and Alain Louveau, Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society Lecture Note Series, vol. 128, Cambridge University Press, Cambridge, 1987. MR 953784, DOI 10.1017/CBO9780511758850
- A. S. Kechris, A. Louveau, and W. H. Woodin, The structure of $\sigma$-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), no. 1, 263–288. MR 879573, DOI 10.1090/S0002-9947-1987-0879573-9
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Carlos E. Uzcátegui A., The covering property for $\sigma$-ideals of compact sets, Fund. Math. 141 (1992), no. 2, 119–146. MR 1183328, DOI 10.4064/fm-141-2-119-146
Bibliographic Information
- Miroslav Zelený
- Affiliation: Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague 186 00, Czech Republic
- Email: zeleny@karlin.mff.cuni.cz
- Received by editor(s): May 5, 1996
- Additional Notes: Research supported by Research Grants GAUK 362, GAUK 363 and GAČR 201/94/0474.
- Communicated by: Franklin D. Tall
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3027-3032
- MSC (1991): Primary 03E15, 28A05; Secondary 42A63
- DOI: https://doi.org/10.1090/S0002-9939-97-04041-0
- MathSciNet review: 1415378