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A CHARACTERIZATION OF CANCELLATION IDEALS

D. D. ANDERSON AND MOSHE ROITMAN

(Communicated by Wolmer V. Vasconcelos)

Abstract. An ideal I of a commutative ring R with identity is called a can-
cellation ideal if whenever IB = IC for ideals B and C of R, then B = C. We
show that an ideal I is a cancellation ideal if and only if I is locally a regular
principal ideal.

Let R be a commutative ring with identity. An ideal I of R is called a cancellation
ideal if whenever IB = IC for ideals B and C of R, then B = C. It is easily seen
that I is a cancellation ideal if and only if whenever IB ⊆ IC for ideals B and
C of R, then B ⊆ C. A good introduction to cancellation ideals may be found in
Gilmer [1, Section 6]. As for examples, it is easy to see that a principal ideal (a) is
a cancellation ideal if and only if (a) is a regular ideal (i.e., a is not a zero divisor).
An invertible ideal is a cancellation ideal. More generally, an ideal that is locally a
regular principal ideal is a cancellation ideal. The purpose of this paper is to prove
the converse.

Kaplansky [2, Theorem 287] proved that a finitely generated cancellation ideal
in a quasi-local domain is principal. We begin with the following lemma which is a
modification of Kaplansky’s result (see [1, Exercise 7, page 67]). We use essentially
the same argument.

Lemma. Let R be a commutative ring with identity and let I be a cancellation
ideal of R. Suppose that I = (x, y)+A where A is an ideal of R containing MI for
some maximal ideal M . Then I = (x) +A or I = (y) +A.

Proof. Put J =
(
x2 + y2, xy, xA, yA,A2

)
. Then it is easily checked that IJ = I3.

Since I is a cancellation ideal, we have J = I2. Thus x2 = λ
(
x2 + y2

)
+ terms

from
(
xy, xA, yA,A2

)
. First, suppose that λ ∈ M . Since λx ∈ MI ⊆ A, we have

x2 ∈ (
y2, xy, xA, yA,A2

)
. LetK = (y)+A. Then I2 = IK. Since I is a cancellation

ideal, we have I = K. Next, suppose that λ /∈M . Then for some µ ∈ R andm ∈M ,
we have µ (−λ) = 1+m. Now −µλy2 = µ (λ− 1)x2+ terms from

(
xy, xA, yA,A2

)
.

Since my2 = (my) y ∈ (MI) y ⊆ Ay, we have y2 ∈ (
x2, xy, xA, yA,A2

)
. Thus, as

in the first case, we get that I = (x) +A.

Theorem. Let R be a commutative ring with identity. An ideal I of R is a can-
cellation ideal if and only if I is locally a regular principal ideal.
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Proof. We have already remarked that an ideal that is locally a regular principal
ideal is a cancellation ideal. Conversely, suppose that I is a cancellation ideal. Let
M be a maximal ideal of R. We show that IM is a regular principal ideal. We
may assume that I ⊆M . Choose a subset {bα}α∈Λ of I so that

{
bα
}
α∈Λ

is a basis

for the R/M -vector space I/MI. Suppose that |Λ| > 1. Then for α1, α2 ∈ Λ with
α1 6= α2, we get I = (bα1 , bα2) + ({bα | α ∈ Λ− {α1, α2}}) + MI. By the lemma,
say, I = (bα1) + ({bα | α ∈ Λ− {α1, α2}}) +MI. But then {bα | α ∈ Λ− {α2}} is
a R/M -basis for I/MI, a contradiction. Hence I = (a) + MI for some a ∈ I.
Let b ∈ I. Then (b) I = (b) ((a) +MI) = (a) (b) + M (b) I ⊆ (a) I + M (b) I =
((a) +M (b)) I. Hence (b) ⊆ (a) +M (b). Then b = ra + mb for some m ∈ M , so
(1−m) b = ra and hence since 1−m is a unit in RM , b ∈ (a)M . Thus IM = (a)M .
Suppose that ca = 0 in RM . Then (cI)M = (ca)M = 0M , so (cI)M = (cMI)M .
Since (cI)N = (cMI)N for all other maximal ideals N of R, we have cI = cMI.
Since I is a cancellation ideal, (c) = (c)M . Thus c = 0 in RM . Hence IM is
regular.

Corollary 1. Let R be a commutative ring with identity, S a multiplicatively closed
subset of R, and I a cancellation ideal of R. Then IS is a cancellation ideal in RS.

We would like to thank the referee for suggesting the following corollary.

Corollary 2. Let R be a subring of the integral domain T . If I is a cancellation
ideal of R, then IT is a cancellation ideal of T .

While we have shown that a cancellation ideal I is locally a regular principal
ideal, I itself need not be regular. Gilmer [1, Exercise 10, page 456] has given an
example of a finitely generated cancellation ideal that is not regular.
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