Orbifolds with lower Ricci curvature bounds
HTML articles powered by AMS MathViewer
- by Joseph E. Borzellino
- Proc. Amer. Math. Soc. 125 (1997), 3011-3018
- DOI: https://doi.org/10.1090/S0002-9939-97-04046-X
- PDF | Request permission
Abstract:
We show that the first betti number $b_1(O)=\dim H_1(O,{\mathbb R})$ of a compact Riemannian orbifold $O$ with Ricci curvature $\mathrm {Ric}(O)\ge -(n-1)k$ and diameter $\operatorname {diam}(O)\le D$ is bounded above by a constant $c(n,kD^2)\ge 0$, depending only on dimension, curvature and diameter. In the case when the orbifold has nonnegative Ricci curvature, we show that the $b_1(O)$ is bounded above by the dimension $\dim O$, and that if, in addition, $b_1(O)=\dim O$, then $O$ is a flat torus $T^n$.References
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
- Joseph E. Borzellino, Orbifolds of maximal diameter, Indiana Univ. Math. J. 42 (1993), no. 1, 37–53. MR 1218706, DOI 10.1512/iumj.1993.42.42004
- Joseph E. Borzellino and Shun-Hui Zhu, The splitting theorem for orbifolds, Illinois J. Math. 38 (1994), no. 4, 679–691. MR 1283015
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- S. Gallot. A Sobolev Inequality and Some Geometric Applications, Spectra of Riemannian Manifolds, Kaigai Publications, Tokyo, 1983, 45–55.
- Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris, 1981 (French). Edited by J. Lafontaine and P. Pansu. MR 682063
- André Haefliger, Groupoïdes d’holonomie et classifiants, Astérisque 116 (1984), 70–97 (French). Transversal structure of foliations (Toulouse, 1982). MR 755163
- J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1–7. MR 232311
- John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR 1299730, DOI 10.1007/978-1-4757-4013-4
- A. Schwarz. A Volume Invariant of Coverings, Dokl. Ak. Nauk. USSR 105 (1955), 32–34 [in Russian].
- W. Thurston. The Geometry and Topology of 3–Manifolds, Lecture Notes, Princeton University Math. Dept., 1978.
- Joseph A. Wolf, Spaces of constant curvature, 5th ed., Publish or Perish, Inc., Houston, TX, 1984. MR 928600
- S. Zhu. The Comparison Geometry of Ricci Curvature, preprint.
Bibliographic Information
- Joseph E. Borzellino
- Email: borzelli@math.psu.edu
- Received by editor(s): May 15, 1996
- Communicated by: Christopher Croke
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3011-3018
- MSC (1991): Primary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-97-04046-X
- MathSciNet review: 1415575