PREScribing GAUSSian CURVATURE ON R^2

Sanxing Wu

(Communicated by Peter Li)

Abstract. We derive a sufficient condition for a radially symmetric function $K(x)$ which is positive somewhere to be a conformal curvature on R^2. In particular, we show that every nonnegative radially symmetric continuous function $K(x)$ on R^2 is a conformal curvature.

In this paper, we consider the prescribing Gaussian curvature problem. Let (M,g) be a Riemannian manifold of dimension 2 with Gaussian curvature k. Given a function K on M, one may ask the following question: Can we find a new conformal metric g_1 on M (i.e., there exists u on M such that $g_1 = e^{2u}g$) such that K is the Gaussian curvature of g_1? This is equivalent to the problem of solving the elliptic equation

$$\Delta u - k + Ke^{2u} = 0$$

on M, where Δ is the Laplacian of (M,g). This problem has been considered by many authors. In case M is compact, we refer to [6] for details and references.

In case $M = R^2$, equation (0) becomes

$$\Delta u + K(x)e^{2u} = 0$$

and this problem is well understood if $K(x)$ is nonpositive; in particular, if $|K(x)|$ decays slower than $|X|^{-2}$ at infinity, then equation (1) has no solution (see [11], [13]). However, if $K(x)$ is positive at some point, the situation is totally different. If $K(x) > 0$ for some $x_0 \in R^2$, R. C. McOwen [10] proved that, for $K(x) = O(r^{-l})$ as $r \to \infty$, equation (1) has a C^2 solution, where l is a positive constant. Also, it is not difficult to see that equation (1) has solutions for every positive constant $K(x) = C$.

Since there is no known nonexistence result for $K \geq 0$ on R^2, one may propose the following

Problem 1. Is it true that every nonnegative function (smooth enough) on R^2 is a conformal Gaussian curvature function?

Received by the editors May 10, 1996.

1991 Mathematics Subject Classification. Primary 58G30; Secondary 53C21.

Key words and phrases. Prescribing Gaussian curvature, semilinear elliptic PDE, integral equation.

©1997 American Mathematical Society
We shall prove an existence theorem for equation (1) when $K(x)$ is a radially symmetric function. As usual, we set

$$K_-(x) = \min\{K(x), 0\},$$

$$K_+(x) = \max\{K(x), 0\},$$

so $K(x) = K_-(x) + K_+(x)$.

Theorem 1. If $K(x) = \tilde{K}(r)$ is a radially symmetric continuous function on \mathbb{R}^2, and there exists an $\alpha > 0$ such that

$$\int_0^\infty s^{(1+2\alpha)} \left| \tilde{K}_-(s) \right| ds < \infty,$$

then equation (1) has infinitely many solutions.

Corollary 2. If $K(x) \geq 0$ is a radially symmetric continuous function on \mathbb{R}^2, then equation (1) has infinitely many solutions.

Remark 3. The above theorem seems to suggest a positive answer to Problem (1). This is particularly interesting because in dimensions $n \geq 3$, not every positive function on \mathbb{R}^n is a conformal scalar curvature function. W. M. Ni [12] has shown that a nonnegative function $K(x)$ on \mathbb{R}^n cannot be a conformal scalar curvature function if $K(x)$ satisfies $K(x) \geq C|x|^l$ near ∞, where $C > 0$ and $l > 2$ are constants. Moreover, W. Y. Ding and W. M. Ni [3] have shown that there exist smooth radial functions $K(x)$ which are constant at infinity such that the equation

$$\Delta u + K(x)u^{\frac{n+2}{n-2}} = 0$$

has no radial solution.

Our proof is based on the following Schauder-Tychonoff fixed point theorem (cf. [1], [4]).

Theorem (Schauder-Tychonoff). Let E be a separated locally convex topological vector space, let A be a nonempty closed convex subset of E, and let T be a continuous map of A into itself such that $T(A)$ is relatively compact (i.e., $\overline{T(A)}$ is compact) in E. Then T admits at least one fixed point.

Proof of Theorem 1. Let $K(x) = \tilde{K}(r)$ with $r = |x|$; we try to find a solution $u(r)$ of (1) with $u(0) = \beta$ and $u'(0) = 0$. Then (1) is equivalent to the following integral equation:

$$u(r) = \beta - \int_0^r s \log \left(\frac{r}{s} \right) \tilde{K}(s)e^{2u(s)} ds. \tag{3}$$

Now we choose $0 < \alpha' < \alpha$ and β such that

$$\int_0^e s \log \left(\frac{r}{s} \right) \left| \tilde{K}_-(s) \right| e^{2(\beta+1)} ds < \frac{1}{2}, \tag{4}$$

$$\int_0^e \left| \tilde{K}_-(s) \right| e^{2(\beta+1)} ds < \frac{\alpha'}{2}, \tag{5}$$

$$\int_e^\infty s^{(1+2\alpha')} \left| \tilde{K}_-(s) \right| e^{2(\beta+1)} ds < \frac{\alpha'}{2}, \tag{6}$$

$$\int_e^\infty s^{(1+2\alpha')} \log \left(\frac{e}{s} \right) \left| \tilde{K}_-(s) \right| e^{2(\beta+1)} ds < \frac{1}{2}. \tag{7}$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Define the functions \(A_\beta(r) \) and \(B_\beta(r) \) by

\[
\begin{align*}
A_\beta(r) &= (\beta + 1), & \text{if } 0 \leq r \leq e, \\
A_\beta(r) &= (\beta + 1) + \alpha' \log \left(\frac{r}{e} \right), & \text{if } e \leq r,
\end{align*}
\]

(8)

\[
B_\beta(r) = \beta - \int_0^r s \log \left(\frac{r}{s} \right) \tilde{K}_+(s)e^{2A_\beta(s)} \, ds.
\]

(9)

Let \(X \) denote the locally convex space of all continuous functions on \([0, \infty)\) with the usual topology, i.e., \(\lim_{n \to \infty} f_n = f \) in \(X \) iff \(f_n \) converges to \(f \) uniformly on any compact subset of \([0, \infty)\).

Now consider the set

\[Y = \{ u \in X | B_\beta(r) \leq u(r) \leq A_\beta(r), \quad r \in [0, \infty) \}. \]

It is easy to see that \(Y \) is a closed convex subset of \(X \). Let \(T \) be the mapping

\[
(Tu)(r) = \beta - \int_0^r s \log \left(\frac{r}{s} \right) \tilde{K}_+(s)e^{2u(s)} \, ds.
\]

(10)

We shall prove that \(T \) is a continuous mapping from \(Y \) into itself such that \(TY \) is relatively compact.

First, we verify that \(TY \subset Y \). Assume \(u \in Y \). Hence we have

\[
B_\beta(r) \leq u(r) \leq A_\beta(r), \quad r \in [0, \infty).
\]

(11)

It is easy to see that \(Tu \) is continuous. Now for \(0 \leq r \leq e \) we have

\[
(Tu)(r) = \beta - \int_0^r s \log \left(\frac{r}{s} \right) \tilde{K}_-(s)e^{2u(s)} \, ds - \int_0^r s \log \left(\frac{r}{s} \right) \tilde{K}_+(s)e^{2u(s)} \, ds
\]

\[
\leq \beta - \int_0^e s \log \left(\frac{e}{s} \right) \tilde{K}_-(s)e^{2(\beta+1)} \, ds
\]

\[
\leq (\beta + 1) = A_\beta(r).
\]

For \(e \leq r \), we have

\[
(Tu)(r) = \beta - \int_0^r s \log \left(\frac{r}{s} \right) \tilde{K}_-(s)e^{2u(s)} \, ds - \int_0^r s \log \left(\frac{r}{s} \right) \tilde{K}_+(s)e^{2u(s)} \, ds
\]

\[
\leq \beta - \log \left(\frac{e}{r} \right) \int_0^e s \tilde{K}_-(s)e^{2(\beta+1)} \, ds - \int_0^e s \log \left(\frac{e}{s} \right) \tilde{K}_-(s)e^{2(\beta+1)} \, ds
\]

\[
- \log \left(\frac{e}{r} \right) \int_e^\infty s^{(1+2\alpha')} \tilde{K}_-(s)e^{2(\beta+1)} \, ds
\]

\[
- \int_e^\infty s^{(1+2\alpha')} \log \left(\frac{e}{s} \right) \tilde{K}_-(s)e^{2(\beta+1)} \, ds
\]

\[
\leq \beta + \frac{\alpha'}{2} \log \left(\frac{r}{e} \right) + \frac{1}{2} + \frac{\alpha'}{2} \log \left(\frac{r}{e} \right) + \frac{1}{2}
\]

\[
= (\beta + 1) + \alpha' \log \left(\frac{r}{e} \right) = A_\beta(r).
\]
On the other hand, since $u(r) \in Y$, we have
\[
(Tu)(r) = \beta - \int_0^r s \log \left(\frac{r}{s} \right) \bar{K}^{-}(s)e^{2u(s)} \, ds - \int_0^r s \log \left(\frac{r}{s} \right) \bar{K}^{+}(s)e^{2u(s)} \, ds
\geq \beta - \int_0^r s \log \left(\frac{r}{s} \right) e^{2\beta}(s) \, ds
= B_\beta(r).
\]
This verifies that $TY \subset Y$.

To show that T is continuous in Y, let $\{u_m\}_{m=1}^\infty \subset Y$ be a sequence converging to $u \in Y$ in the space X. Then u_m converges to u uniformly on any compact interval of $[0, \infty)$. Now
\[
|Tu_m(r) - Tu(r)| \leq \int_0^r s \log \left(\frac{r}{s} \right) |\bar{K}(s)| |e^{2u_m(s)} - e^{2u(s)}| \, ds,
\]
but
\[
s \log \left(\frac{r}{s} \right) |\bar{K}(s)| |e^{2u_m(s)} - e^{2u(s)}| \leq s \log \left(\frac{r}{s} \right) |\bar{K}(s)||e^{2A_\beta(s)} - e^{2B_\beta(s)}| \leq s \log \left(\frac{r}{s} \right) |\bar{K}(s)|e^{2A_\beta(s)}
\]
and $s \log \left(\frac{r}{s} \right) |\bar{K}(s)|e^{2A_\beta(s)}$ is integrable on any compact interval of $[0, \infty)$. Hence from (12) and the uniform convergence of u_m to u on any compact interval, we conclude that Tu_m converges to Tu uniformly on any compact interval, which implies that Tu_m converges to Tu in X. This verifies that T is continuous in Y.

We can easily compute that
\[
|\langle Tu \rangle'(r)| = \left| \int_0^r \left(\frac{s}{r} \right) \bar{K}(s)e^{2u(s)} \, ds \right| \leq \int_0^r \left(\frac{s}{r} \right) |\bar{K}(s)|e^{2A_\beta(s)} \, ds.
\]
Hence, on any compact interval of $[0, \infty)$, TY is uniformly bounded and equiconv-}

tinuous. This proves that TY is relatively compact in Y. So by the Schauder-

Tychonoff fixed point theorem, T has a fixed point u in Y. This u is a solution of (2) and hence a solution of (1). We notice that, if (3) has a solution for some β, then it has a solution for all $\beta_1 \leq \beta$. This completes the proof of Theorem 1.

In the $n \geq 3$ dimension case, if we also assume that $K(x) = \bar{K}(r)$ is radially symmetric in (1), and we want to find a radially symmetric solution $u(r)$ such that $u(0) = \beta$ and $u'(0) = 0$, then (1) is equivalent to
\[
u(r) = \beta - \frac{1}{n-2} \int_0^r \left(1 - \frac{s}{r} \right)^{n-2} \bar{K}(s)e^{2u(s)} \, ds.
\]
In this situation we can show the following

Theorem 4. If $K(x) = \bar{K}(r)$ is a radially symmetric continuous function on R^n, $n \geq 3$, such that
\[
\int_0^\infty s|\bar{K}^{-}(s)| \, ds < \infty,
\]
then the equation
\[
\Delta u + K(x)e^{2u} = 0
\]
has infinitely many solutions.
Proof. The argument is essentially the same as in the proof of Theorem 1. We leave the details to the readers.

References

12. ______, On the elliptic equation $\Delta u + K(x)u^{(n+2)/(n-2)} = 0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), 495–529. MR 84e:35049

Department of Applied Mathematics, 100083, Beijing University of Aeronautics and Astronautics, Beijing, People’s Republic of China