Nielsen-Thurston reducibility and renormalization
HTML articles powered by AMS MathViewer
- by Olivier Courcelle, Jean-Marc Gambaudo and Charles Tresser
- Proc. Amer. Math. Soc. 125 (1997), 3051-3058
- DOI: https://doi.org/10.1090/S0002-9939-97-04159-2
- PDF | Request permission
Abstract:
Consider an orientation preserving homeomorphism $f$ of the 2-disk with an infinite set of nested periodic orbits $\{\mathcal {O}_n\}_{n\ge 1}$, such that, for all $m>1$, the restriction of $f$ to the complement of the first $m$ orbits, from $\mathcal {O}_1$ to $\mathcal {O}_m$, is $m-1$ times reducible in the sense of Nielsen and Thurston. We define combinatorial renormalization operators for such maps, and study the fixed points of these operators. We also recall the corresponding theory for endomorphisms of the interval, and give elements of comparison of the theories in one and two dimensions.References
- H. Bass, M. V. Otero-Espinar, D. Rockmore, and C. Tresser, Cyclic Renormalization and Automorphism Groups of Rooted Trees, Lecture Notes in Mathematics 1621 (Springer, Berlin, 1996).
- Rufus Bowen and John Franks, The periodic points of maps of the disk and the interval, Topology 15 (1976), no. 4, 337–342. MR 431282, DOI 10.1016/0040-9383(76)90026-4
- P. Coullet and C. Tresser, Itérations d’endomorphismes et groupe de renormalisation, J. Phys. C5 (1978), 25–28.
- Jean-Marc Gambaudo, John Guaschi, and Toby Hall, Period-multiplying cascades for diffeomorphisms of the disc, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 2, 359–374. MR 1281553, DOI 10.1017/S0305004100072649
- J.-M. Gambaudo, S. van Strien, and C. Tresser, Hénon-like maps with strange attractors: there exist $C^\infty$ Kupka-Smale diffeomorphisms on $S^2$ with neither sinks nor sources, Nonlinearity 2 (1989), no. 2, 287–304. MR 994094
- J.-M. Gambaudo, D. Sullivan, and C. Tresser, Infinite cascades of braids and smooth dynamical systems, Topology 33 (1994), no. 1, 85–94. MR 1259516, DOI 10.1016/0040-9383(94)90036-1
- Jean-Marc Gambaudo and Charles Tresser, Self-similar constructions in smooth dynamics: rigidity, smoothness and dimension, Comm. Math. Phys. 150 (1992), no. 1, 45–58. MR 1188495
- Mitchell J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys. 19 (1978), no. 1, 25–52. MR 501179, DOI 10.1007/BF01020332
- John Franks and Lai Sang Young, A $C^{2}$ Kupka-Smale diffeomorphism of the disk with no sources or sinks, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 90–98. MR 654885
- Jakob Nielsen, Jakob Nielsen: collected mathematical papers. Vol. 1, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1986. Edited and with a preface by Vagn Lundsgaard Hansen. MR 865335
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, DOI 10.1090/S0273-0979-1988-15685-6
- Charles Tresser and Pierre Coullet, Itérations d’endomorphismes et groupe de renormalisation, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 7, A577–A580 (French, with English summary). MR 512110
Bibliographic Information
- Olivier Courcelle
- Affiliation: Section de Mathématiques, Université de Genève, CP240, CH1211 Genève 24, Suisse
- Email: courcell@divsun.unige.ch
- Jean-Marc Gambaudo
- Affiliation: INLN, 1361 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
- Email: jmga@ecu.unice.fr
- Charles Tresser
- Affiliation: IBM, P.O. Box 218, Yorktown Heights, New York 10598
- MR Author ID: 174225
- Email: tresser@watson.ibm.com
- Received by editor(s): October 24, 1995
- Communicated by: Linda Keen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3051-3058
- MSC (1991): Primary 58F99
- DOI: https://doi.org/10.1090/S0002-9939-97-04159-2
- MathSciNet review: 1425117