$\operatorname {Lip}_{Hol}(X,\alpha )$
HTML articles powered by AMS MathViewer
- by K. Jarosz
- Proc. Amer. Math. Soc. 125 (1997), 3129-3130
- DOI: https://doi.org/10.1090/S0002-9939-97-04238-X
- PDF | Request permission
Abstract:
Let $X$ be a compact subset of the complex plane $\mathbb {C},$ and let $0<\alpha \leq 1.$ We show that the maximal ideal space of Banach algebras of Lipschitz functions, which are analytic on $\mathrm {int}X$, coincides with $X.$References
- H. G. Dales and A. M. Davie, Quasianalytic Banach function algebras, J. Functional Analysis 13 (1973), 28β50. MR 0343038, DOI 10.1016/0022-1236(73)90065-7
- Taher G. Honary, Relations between Banach function algebras and their uniform closures, Proc. Amer. Math. Soc. 109 (1990), no.Β 2, 337β342. MR 1007499, DOI 10.1090/S0002-9939-1990-1007499-4
- H. Mahyar, The maximal ideal space of $\textrm {lip}_A(X,\alpha )$, Proc. Amer. Math. Soc. 122 (1994), no.Β 1, 175β181. MR 1257117, DOI 10.1090/S0002-9939-1994-1257117-9
Bibliographic Information
- K. Jarosz
- Affiliation: Department of Mathematics, Southern Illinois University at Edwardsville, Edwards- ville, Illinois 62026
- MR Author ID: 93850
- Email: kjarosz@siue.edu
- Received by editor(s): July 7, 1995
- Received by editor(s) in revised form: October 20, 1996
- Communicated by: Dale Alspach
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3129-3130
- MSC (1991): Primary 46J15
- DOI: https://doi.org/10.1090/S0002-9939-97-04238-X
- MathSciNet review: 1443834