The slice genus and the Thurston-Bennequin invariant of a knot
HTML articles powered by AMS MathViewer
- by Lee Rudolph
- Proc. Amer. Math. Soc. 125 (1997), 3049-3050
- DOI: https://doi.org/10.1090/S0002-9939-97-04258-5
- PDF | Request permission
Abstract:
For any knot $K\subset S^{3}$, $g_{s}(K) \ge (\operatorname {TB}(K)+1)/2$.References
- Daniel Bennequin, Entrelacements et équations de Pfaff, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982) Astérisque, vol. 107, Soc. Math. France, Paris, 1983, pp. 87–161 (French). MR 753131
- P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces. I, Topology 32 (1993), no. 4, 773–826. MR 1241873, DOI 10.1016/0040-9383(93)90051-V
- —, personal communication, December 11, 1995.
- Lee Rudolph, An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995), no. 1, 155–163. MR 1309974, DOI 10.1007/BF01245177
- Lee Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 51–59. MR 1193540, DOI 10.1090/S0273-0979-1993-00397-5
Bibliographic Information
- Lee Rudolph
- Affiliation: Department of Mathematics and Computer Science, Clark University, Worcester, Massachusetts 01610
- Email: lrudolph@black.clarku.edu
- Received by editor(s): October 12, 1995
- Additional Notes: The author was partially supported by NSF grant DMS-9504832 and CNRS
- Communicated by: Ronald Stern
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3049-3050
- MSC (1991): Primary 57M25; Secondary 14H99
- DOI: https://doi.org/10.1090/S0002-9939-97-04258-5
- MathSciNet review: 1443854