COPRIMENESS AMONG IRREDUCIBLE CHARACTER DEGREES OF FINITE SOLVABLE GROUPS

DIANE BENJAMIN

(Communicated by Ronald M. Solomon)

Abstract. Given a finite solvable group G, we say that G has property P_k if every set of k distinct irreducible character degrees of G is (setwise) relatively prime. Let $k(G)$ be the smallest positive integer such that G satisfies property P_k. We derive a bound, which is quadratic in $k(G)$, for the total number of irreducible character degrees of G. Three exceptional cases occur; examples are constructed which verify the sharpness of the bound in each of these special cases.

1. Introduction

Suppose G is a finite solvable group and let $\text{cd}(G)$ denote the set $\{\chi(1) \mid \chi \in \text{Irr}(G)\}$. We say that G has property P_k if every set of k distinct elements of $\text{cd}(G)$ is (setwise) relatively prime. Every finite group G satisfies P_k at least for $k \geq |\text{cd}(G)|$, since $1 \in \text{cd}(G)$. The main result of this paper is the following:

Theorem A. Let G be a nonabelian finite solvable group and let k be the smallest positive integer such that G satisfies property P_k. Then

$$|\text{cd}(G)| \leq \begin{cases} 3 & \text{if } k = 2; \\ 6 & \text{if } k = 3; \\ 9 & \text{if } k = 4; \\ k^2 - 3k + 4 & \text{if } k \geq 5. \end{cases}$$

Following the proof of Theorem A, a collection of examples is presented. In each of the exceptional cases $k = 2, 3, 4$ the bound is attained. For $k = 2$, an example is provided by the group $SL(2,3)$. This group satisfies P_2 and has 3 irreducible character degrees: $\text{cd}(SL(2,3)) = \{1, 2, 3\}$. For $k = 3$, we construct a group Γ with $\text{cd}(\Gamma) = \{1, r, s, rs, q^4, q^5\}$, where q, r, s are any three primes satisfying $q \equiv 3 \pmod{4}$ and $q \equiv 1 \pmod{rs}$. The group Γ attains the bound in this case. Next, for infinitely many values of k, we construct a group which satisfies property P_k and has $3(k - 1)$ irreducible character degrees. Observe that, for $k = 4$, such a group satisfies P_4 and has 9 irreducible character degrees, verifying the sharpness of the bound in this case. It also follows from this infinite set of examples that the best possible bound for $|\text{cd}(G)|$ in terms of k cannot be better than the linear bound $3(k - 1)$.

Received by the editors April 4, 1996.

1991 Mathematics Subject Classification. Primary 20C15.

©1997 American Mathematical Society
While this result belongs to a genre of problems and results concerning the irreducible character degrees of finite solvable groups (see §2 of [4]), it has a unique flavor. The investigation of property P_k was inspired by problem 12.3 of [1] which is, in fact, the $k = 2$ case of the result. At this point the author would like to express her appreciation to Professor Martin Isaacs for his direction and encouragement in this work, which is a portion of her thesis.

2. Preliminaries

The purpose of this section is to restate facts about the structure and character degrees of a factor group G/K of a finite nonabelian solvable group G with K chosen to be maximal such that G/K remains nonabelian. Notice that, in this situation every proper factor group of G/K is abelian and thus $(G/K)'$ is the unique minimal normal subgroup of G/K.

(2.1) Lemma. Let G be a finite solvable group and assume that G' is the unique minimal normal subgroup of G. Then all the nonlinear irreducible characters of G have equal degree f and one of the following situations obtains:

(a) G is a p-group, $Z(G)$ is cyclic and $G/Z(G)$ is elementary abelian of order f^2.
(b) G is a Frobenius group with a cyclic Frobenius complement of order f. Also, G' is the Frobenius kernel and is an elementary abelian p-group.

Proof. This is Lemma 12.3 of [1] with the observation that an abelian Frobenius complement is necessarily cyclic.

(2.2) Theorem. Let $K \triangleleft G$ be such that G/K is a Frobenius group with kernel N/K, an elementary abelian p-group. Let $\psi \in \text{Irr}(N)$. Then one of the following holds:

(a) $|G:N|\psi(1) \in \text{cd}(G)$.
(b) p divides $\psi(1)$.

Proof. This is immediate from Theorem 12.4 of [1].

3. Proof of Theorem A

We begin by proving a key lemma.

(3.1) Lemma. Let G be a finite nonabelian solvable group with $G' \leq O^p(G)$ for all primes p. Suppose that $K \triangleleft G$ and K is maximal such that G/K is nonabelian. Then G/K is a Frobenius group with Frobenius kernel N/K, an elementary abelian q-group for some prime q, and a cyclic Frobenius complement. Let f denote the order of the Frobenius complement and assume further that K is chosen so that f is minimal. Then for each linear character λ of N, either λ^G is irreducible or λ extends to G. In particular, if $\chi \in \text{Irr}(G)$ lies over a linear character of N, then χ must have degree 1 or f.

It will be handy in the proof to use the standard notation $b(G)$ to denote the largest irreducible character degree of G; that is, the maximum of the set $\text{cd}(G)$.

Proof. By hypothesis, if $M \triangleleft G$ with $K < M$, then the quotient G/M is abelian. Since G is solvable, it follows that $(G/K)'$ is the unique minimal normal subgroup of G/K. Now since G has no nonabelian p-factor groups for any prime p, the Frobenius structure of G/K follows from Lemma 2.1 (b).
Fix a linear character \(\lambda \in \text{Irr}(N) \) and let \(\chi \in \text{Irr}(G) \) lie over \(\lambda \). Set \(T = I_G(\lambda) \) and \(t = [G : T] \). Since \(T/N \) is cyclic, \(\lambda \) extends to a character \(\hat{\lambda} \in \text{Irr}(T) \) and further, by Corollary 6.17 of [1], every element of \(\text{Irr}(T) \lambda \) is an extension of \(\lambda \).

We may then assume without loss of generality that the extension \(\hat{\lambda} \) is the Clifford correspondent between \(\chi \) and \(\lambda \). Thus \(\hat{\lambda} = (\lambda)^G \) and \(\chi_N = \sum_{i=1}^{t} \lambda_i \), labeled so that \(\lambda_1 = \lambda \). Also note that \(\chi(1) = t \).

We are done if \(t = 1 \) or \(t = f \), so assume, for a contradiction, that neither happens. In this case \(1 < t = \chi(1) < f \) and \(N < T < G \). Let \(M = \ker \lambda \). Since \(T \) fixes the linear character \(\lambda \), it follows that \(T \) centralizes \(N/M \) and so \([T, N] \leq M\). Also \([T, N] \triangleleft G \), since both \(T \) and \(N \) are normal. Let \(\equiv \) denote quotients mod \([T, N]\). Then \(\mathcal{N} \) is central in \(T \) and \(T/\mathcal{N} \) is cyclic since it is isomorphic to \(T/N \); thus \(T \) is abelian. We have \(T \) is normal and abelian in \(\mathcal{G} \). By Ito’s Theorem (6.15 of [1]) \(t = [\mathcal{G} : T] \geq b(\mathcal{G}) \). Also, since \(\ker \chi \geq \text{core}_G(\ker \lambda) \geq [T, N] \), we may view \(\chi \) as an element of \(\text{Irr}(\mathcal{G}) \). We have \(t = \chi(1) \in \text{cd}(\mathcal{G}) \) and thus \(\mathcal{G} \) is nonabelian.

Now, let \(\mathcal{G}/\mathcal{L} \) be a minimal nonabelian factor of \(\mathcal{G} \). Clearly the hypothesis on \(p \)-factors of \(G \) holds for \(p \)-factors of \(\mathcal{G} \). It follows from Lemma 2.1 that \(G/\mathcal{L} \) is a Frobenius group with a Frobenius complement of order \(\chi(1) = t < f \). Since factors of \(\mathcal{G} \) are factors of \(G \), this contradicts the minimality of \(f \). \(\square \)

It will now be convenient to establish some notation for the proof of Theorem A. For a group \(G \), we define \(k(G) \) to be the smallest integer such that \(G \) satisfies property \(P_k \). Note that \(k(G) \leq |\text{cd}(G)| \) and if \(G \) is a \(q \)-group, for \(q \) prime, then equality holds. Given a positive integer \(q \), we define \(\text{cd}_q(G) = \{n \in \text{cd}(G) \mid (q, n) = 1\} \) and \(\text{cd}^q(G) = \{n \in \text{cd}(G) \mid q|n\} \). If \(q \) is prime, then \(\text{cd}(G) \) is the disjoint union of these two sets. Also, for \(N \triangleleft G \) with \(m \in \text{cd}(N) \) if there exists \(\psi \in \text{Irr}(N) \) and \(\chi \in \text{Irr}(G|\psi) \) with \(\chi(1) = n \) and \(\psi(1) = m \), then we will say that \(n \) lies over \(m \). Further, for each such \(m \), define a subset of \(\text{cd}(G) \) by \(s(m) = \{n \in \text{cd}(G) \mid n \text{ lies over } m\} \). Note that a given \(n \) may lie over many different \(m \) and each element of \(s(m) \) is divisible by \(m \).

To prove Theorem A, we bound each of \(|\text{cd}^q(G)| \) and \(|\text{cd}_q(G)| \) separately in terms of \(k(G) \) and add the results. Note that if \(k = k(G) \) for a group \(G \), then \(|\text{cd}^q(G)| \leq k - 1 \) for any positive integer \(q \). On the other hand, given \(k \), examples are available among \(q \)-groups, where \(q \) is prime, which satisfy \(|\text{cd}(G)| = k \). For instance, let \(Q \) be the direct product of \(k - 1 \) copies of a \(q \)-group \(A \) having \(\text{cd}(A) = \{1, q\} \). Then \(\text{cd}(Q) = \{1, q, q^2, \cdots, q^{k - 1}\} \); thus \(k = k(Q) \) and \(|\text{cd}^q(Q)| = k - 1 \). It follows that \(k - 1 \) is the best possible bound for \(|\text{cd}^q(G)| \). Our challenge in proving Theorem A will be to bound \(|\text{cd}_q(G)| \).

Proof of Theorem A. Let \(G \) be a nonabelian finite solvable group and let \(k = k(G) \).

Suppose first that \(G \) has a nonabelian \(p \)-factor group \(G/K \) for some prime \(p \). As we have observed, \(|\text{cd}^p(G)| \leq k - 1 \). Now we consider \(|\text{cd}_p(G)| \). Fix \(\psi \in \text{Irr}(G/K) \) with \(\psi(1) = p^2 > 1 \). For each character \(\chi \in \text{Irr}(G) \) with \((p, \chi(1)) = 1 \) we have \(\chi_K \in \text{Irr}(K) \). By Corollary 6.17 of [1], we have \(\chi \psi \in \text{Irr}(G) \) with degree \(\chi \psi(1) \) divisible by \(p \), since \(\chi \psi(1) = \chi(1)p^2 \). This gives an injection from \(\text{cd}_p(G) \) into \(\text{cd}^p(G) \). Thus \(|\text{cd}_p(G)| \leq k - 1 \) and \(|\text{cd}(G)| \leq 2(k - 1) \). In this case the conclusion of the theorem holds. Henceforth we assume that \(G' \leq O_p(G) \) for all primes \(p \).

Now fix \(K \triangleleft G \) so that \(K \) is maximal with \(G/K \) nonabelian. By Lemma 2.1, \(G/K \) is a Frobenius group with kernel \(N/K \), an elementary abelian \(q \)-group, and with a
cyclic complement H/K of order f. Also $\text{cd}(G/K) = \{1, f\}$. Assume further that K is chosen so that f is minimal. As before, we have $|\text{cd}^f(G)| \leq k - 1$.

To assess $|\text{cd}_q(G)|$ we will examine how many distinct elements of $\text{cd}_q(G)$ lie over each element of $\text{cd}(N)$. If we write $\text{cd}(N) = \text{cd}^f(N) \cup \text{cd}_q(N)$, then notice that elements of $\text{cd}^f(N)$ can lie over only elements of $\text{cd}^f(N)$, since $(q, f) = 1$, and elements of $\text{cd}_q(G)$ lie over only elements of $\text{cd}_q(N)$. Also, by Theorem 2.2 (a), for each element $z \in \text{cd}_q(N)$ we must have $fz \in \text{cd}(G)$. This gives an injection from $\text{cd}_q(N)$ into $\text{cd}^f(G)$. Again, by hypothesis, $|\text{cd}^f(G)| \leq k - 1$; thus $|\text{cd}_q(N)| \leq k - 1$.

It follows that all the elements of $\text{cd}_q(G)$ lie over the, at most $k - 1$, elements of $\text{cd}_q(N)$.

If $z \in \text{cd}_q(N)$, how many elements of $\text{cd}_q(G)$ can lie over z? By Lemma 3.1, if $z = 1$, then $s(z) = \{1, f\}$. If $z > 1$, then $|s(z)| \leq k - 1$, since $s(z) \subseteq \text{cd}^r(G) \leq k - 1$, by hypothesis. It follows that $|\text{cd}_q(G)| \leq 2 + (k - 2)(k - 1)$ and thus we have:

$$|\text{cd}(G)| \leq |\text{cd}^f(G)| + |\text{cd}_q(G)| \leq (k - 1) + 2 + (k - 2)(k - 1) = k^2 - 2k + 3.$$

Observe that, when $k = 2$ the bound $(*)$ yields $|\text{cd}(G)| \leq 3$ and when $k = 3$ the bound $(*)$ yields $|\text{cd}(G)| \leq 6$. Thus the first two special cases of Theorem A have been proved. Henceforth we assume that $k \geq 4$ and will improve $(*)$. We continue as before with the Frobenius factor group G/K.

If $|\text{cd}_q(N)| < k - 1$, then each of the, at most $k - 3$, nonlinear character degrees of $\text{cd}_q(N)$ has at most $k - 1$ elements of $\text{cd}_q(G)$ lying over it; thus $|\text{cd}_q(G)| \leq 2 + (k - 3)(k - 1)$. This observation along with our bound on $|\text{cd}^f(G)|$ yields $|\text{cd}(G)| \leq (k - 1) + 2 + (k - 3)(k - 1) = k^2 - 3k + 4$ and there is nothing further to prove in this case.

We may now assume that $|\text{cd}_q(N)| = k - 1$. In this case $\{fx | x \in \text{cd}_q(N)\}$ is a subset of $\text{cd}(G)$ of size $k - 1$. We will show that $s(z) \subseteq \{z\} \cup \{fx | x \in \text{cd}_q(N)\}$ for each $z \in \text{cd}_q(N)$. Recall that an arbitrary member of $s(z)$ has the form rz, where $r \mid f$. If $rz \in s(z)$ with $r > 1$, then r divides every member of $\{rz\} \cup \{fx | x \in \text{cd}_q(N)\}$. Since the latter set in this union has size $k - 1$, it follows that $rz \in \{fx | x \in \text{cd}_q(N)\}$ and thus we conclude that $s(z) \subseteq \{z\} \cup \{fx | x \in \text{cd}_q(N)\}$ as claimed. It follows that all the members of $\text{cd}_q(G)$ lie in $\text{cd}_q(N) \cup \{fx | x \in \text{cd}_q(N)\}$; hence $|\text{cd}_q(G)| \leq 2(k - 1)$. Since $|\text{cd}^f(G)| \leq k - 1$, we have $|\text{cd}(G)| \leq 3k - 3$, in this case.

For $k \geq 4$ (and $\text{O}^p(G) = 1$), it follows that $|\text{cd}(G)|$ is bounded by the maximum of the bounds derived in the two preceding paragraphs. That is,

$$|\text{cd}(G)| \leq \max \left\{ \begin{array}{l}
(k - 1) + 2 + \frac{(k - 3)(k - 1)}{2} = k^2 - 3k + 4,
(k - 1) + 2(k - 1) = 3k - 3.
\end{array} \right.$$

Observe that, for $k = 4$, the second formula yields a maximum of 9, giving $|\text{cd}(G)| \leq 9$. In the cases $k \geq 5$, the maximum is $k^2 - 3k + 4$. Thus Theorem A is proved. \(\Box\)

In the next section we give constructions which verify the sharpness of the bound in the exceptional cases $k = 3$ and $k = 4$.

4. CONSTRUCTIONS

For any three primes q, r, s satisfying $q \equiv 3 \pmod{4}$ and $q \equiv 1 \pmod{rs}$, we construct a group Γ as the semidirect product of a normal Sylow q-subgroup Q and a cyclic group H of order rs such that $\text{cd}(\Gamma) = \{1, r, s, rs, q^3, q^5\}$. The group Γ satisfies P_3 and has 6 irreducible character degrees; thus providing an example for
the sharpness of the bound in the case \(k = 3 \). Note that \(r = 2, s = 3, q = 7 \) satisfy the conditions.

First we construct \(Q \). Let \(q \) be prime with \(q \equiv 3 \pmod{4} \). Define the group \(Q \) of exponent \(q \) as follows, where all unspecified commutators are trivial:

\[
Q = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10} \mid \\
[x_1, x_2] = [x_3, x_4] = [x_5, x_6] = [x_7, x_8] = [x_9, x_{10}], \\
[x_1, x_4] = [x_2, x_3] = [x_5, x_8] = [x_6, x_7] \rangle.
\]

A few observations about the group \(Q \) are helpful. First, for notational convenience, label \(z_1 = [x_1, x_2] = [x_3, x_4] = [x_5, x_6] = [x_7, x_8] = [x_9, x_{10}] \) and \(z_2 = [x_1, x_4] = [x_2, x_3] = [x_5, x_8] = [x_6, x_7] \). Notice that \(Z(Q) = Q' = \langle z_1, z_2 \rangle \). From this we see that \(|Z(Q)| = q^2 \) and \(|Q/Z(Q)| = q^{10} \). Thus the group \(Q \) is \(q \)-special of order \(q^{12} \) with exponent \(q \). Further, using additive notation, we may view \(Q/Z(Q) \) and \(Z(Q) \) as vector spaces over \(GF(q) \) with bases \(\{x_1, x_2, \ldots, x_{10} \} \) and \(\{z_1, z_2 \} \), respectively. (Here \(- \) denotes quotient mod \(Z(Q) \).)

What are the degrees of the irreducible characters of \(Q \)? Since \(Q \) is \(q \)-special with \(|Q : Z(Q)| = q^{10} \) it follows that \(Q \) has \(q^{10} \) linear characters. Notice that \(Q/(z_1) \) is isomorphic to the direct product of an extra-special group of order \(q^9 \) having exponent \(q \) with \(Z_9 \times Z_q \). Also \(Q/(z_2) \) is an extra-special group of order \(q^{11} \) having exponent \(q \). These quotients give some information about \(\text{Irr}(Q) \) and about \(\text{cd}(Q) \). In particular, we have \(\{1, q^4, q^5 \} \subseteq \text{cd}(Q) \). In fact, with the assumption \(q \equiv 3 \pmod{4} \), we can show that these are the only irreducible character degrees of \(Q \). The following fact is required:

Claim. For each nonlinear character \(\theta \in \text{Irr}(Q) \) we have

(i) \(Q/\ker(\theta) \) is an extra-special \(q \)-group with center \(Z(\theta)/\ker(\theta) \).

(ii) \(Z(\theta) \leq \langle z_1, z_2, x_9, x_{10} \rangle \).

In particular, we have \(\theta(1) \) is \(q^4 \) or \(q^5 \) and every automorphism that centralizes \(\langle z_1, z_2, x_9, x_{10} \rangle \) fixes \(\theta \).

Fix a nonlinear character \(\theta \in \text{Irr}(Q) \). Since \(Q' = Z(Q) \) we have \(Z(Q) \nparallel \ker(\theta) \); also \(Z(Q) \cdot \ker(\theta) \leq Z(\theta) \). The nontrivial group \(Z(\theta)/\ker(\theta) \) is cyclic of exponent \(q \); thus it has order \(q \). Further \(Z(\theta) = \ker(\theta) \cdot Z(Q) \). It follows that \(Q/\ker(\theta) \) has a center of order \(q \) and that the factor group modulo the center is elementary \(q \)-abelian. Thus part (i) holds and from this we have \(\theta(1)^2 = |Q : Z(\theta)| \). Now since \(|\langle z_1, z_2, x_9, x_{10} \rangle| = q^4 \), the final statement of the claim will hold once part (ii) is established.

As before, let \(- \) denote quotient mod \(Z(Q) \). Using additive notation in each of the abelian groups \(Q \) and \(Z(Q) \), for an element \(y \in Z(\theta) \) we may write:

\[
y = c_1x_1 + c_2x_2 + \cdots + c_{10}x_{10} \quad \text{with} \quad c_i \in GF(q).
\]

For each element \(z \in Z(Q) \) and for each generator \(x_i \) we have \([x_i, yz] = [x_i, y] \).

Using the defining relations for the group \(Q \), it follows that:

\[
[x_1, y] = c_2z_1 + c_4z_2 \quad \text{and} \quad [x_3, y] = c_4z_1 - c_2z_2.
\]

Observe that for each element \(y \in Z(\theta) \) and \(x \in Q \) we have \([y, x] \in Q' \cap \ker(\theta) = Z(Q) \cap \ker(\theta) \); thus each of \([x_1, y] \) and \([x_3, y] \) lie in \(Z(Q) \cap K \). Viewing \(Z(Q) \cap K \) as a 1-dimensional subspace of \(Z(Q) \), the vectors \(c_2z_1 + c_4z_2 \) and \(c_4z_1 - c_2z_2 \) are dependent. If either \(c_2 \) or \(c_4 \) is nonzero, then both are nonzero and \(c_4 = \alpha c_2 \) and \(c_2 = -\alpha c_4 \) for some \(\alpha \in GF(q) \); in which case \(-\alpha^2 = 1 \). Invoking the hypothesis
$q \equiv 3 \mod 4$, there is no solution for $-\alpha^2 = 1$ in $GF(q)$. This forces $c_2 = c_4 = 0$. Under the same assumption, similar comparisons (e.g. $[x_2, y]$ and $[x_4, y]$) force $c_1 = c_3 = c_5 = c_6 = c_7 = c_8 = 0$. Thus we have $Z(\theta) \leq \langle x_9, x_{10}, z_1, z_2 \rangle$ and the claim is proved.

Now let r and s be distinct primes dividing $q - 1$. We will define the action of a cyclic group H of order rs on the group Q. First, we define actions on Q by automorphisms a and b of orders r and s respectively. Let δ and ϵ be primitive r and s roots of unity in $GF(q)$ respectively. The actions of a and b are defined on the generators of Q, where all unspecified generators are fixed:

$$\text{for } a: x_1^a = x_1^\delta, \ x_2^a = x_2^{\delta^{-1}}, \ x_3^a = x_3^\epsilon, \ x_4^a = x_4^{\epsilon^{-1}};$$

$$\text{for } b: x_5^b = x_5^\epsilon, \ x_6^b = x_6^{\epsilon^{-1}}, \ x_7^b = x_7^\delta, \ x_8^b = x_8^{\delta^{-1}}.$$

We must verify that the proposed definitions interact well with the defining relations among the generators. That is, it must be shown that: if $[x_i, x_j] = [x_k, x_l]$, then $[x_i, x_j]^a = [x_k, x_l]^a$ and $[x_i, x_j]^b = [x_k, x_l]^b$. In fact, more is true. If we write $x_i^a = x_i^{\alpha_i}$ and $x_j^b = x_j^{\beta_j}$, then $[x_i, x_j]^a = [x_i^{\alpha_i}, x_j^{\alpha_j}] = [x_i^{\alpha_i}, x_j^{\alpha_j}]^{\alpha_i \alpha_j}$; and whenever $[x_i, x_j] \neq 1$ we have $\alpha_i \alpha_j = 1$. Thus every commutator $[x_i, x_j]$ is fixed by a. The same holds for b. It follows that a and b act as automorphisms on Q and that the subgroup $\langle z_1, z_2, x_9, x_{10} \rangle$ is centralized by both a and b. It is also clear that $ab = ba$. Since a and b are commuting automorphisms of Q of relatively prime orders, the cyclic group $H = \langle a \rangle \times \langle b \rangle$ acts on Q. Note that $|H| = rs$ and H centralizes $\langle z_1, z_2, x_9, x_{10} \rangle$.

Now we consider the action of H on $Z(Q)$ and on $Q/Z(Q)$. As observed, H centralizes $Z(Q)$. To understand the action of H on $Q/Z(Q)$, we return to a vector space point of view. As before, let $\overline{\cdot}$ denote quotients mod $Z(Q)$ and use additive notation. From this perspective, the set $\{x_1, x_2, \ldots, x_{10}\}$ is a basis for $Q/Z(Q)$ consisting of eigenvectors of a and b with corresponding eigenvalues—

$$\text{for } a: \delta, \delta^{-1}, \delta, \delta^{-1}, 1, 1, 1, 1, 1;$$

$$\text{for } b: 1, 1, 1, 1, 1, \epsilon, \epsilon^{-1}, \epsilon, \epsilon^{-1}, 1, 1.$$

It follows that a and b act diagonally on \overline{Q} and that the orbits of the action of H on \overline{Q} have sizes 1, r, s, and rs.

To complete the construction, define the group: $\Gamma = Q \rtimes H$.

Now we consider $cd(\Gamma)$. The coprime action of H on the abelian group $Q/Z(Q)$ is permutation isomorphic to the action of H on Irr($Q/Z(Q)$). The orbit sizes of the former action are $\{1, r, s, rs\}$. Since H is cyclic, it follows that $cd(\Gamma/Z(Q)) = \{1, r, s, rs\}$. On the other hand, we see from the claim that each nonlinear irreducible character of Q is fixed by H, since H centralizes $\langle z_1, z_2, x_9, x_{10} \rangle$. Again, since H is cyclic and since the action of H on Q is coprime, the remaining elements of $cd(\Gamma)$ are exactly the nonlinear irreducible character degrees of $cd(Q)$. It follows that $cd(\Gamma) = \{1, r, s, rs, q^k, q^{k-1}\}$.

The next construction will show that for infinitely many values of k there exist groups which satisfy property P_k and have $3(k - 1)$ irreducible character degrees. It follows that the bound of Theorem A cannot be better than the linear bound $3(k - 1)$.

For any two distinct primes p and q and for an appropriate n, one can let a cyclic group of order p act on an extra-special q-group of order q^{2n+1} such that the
irreducible character degrees of the resulting semidirect product are \(\{1, p, q^n\} \). Let the group \(G \) be the direct product of \(m \) groups of this sort such that all of the primes involved are distinct. Then \(|\text{cd}(G)| = 3^m \); further, since a single prime divides no more than \(3^{(m-1)} \) irreducible character degrees of \(G \), we have \(k = k(G) = 3^{(m-1)}+1 \). It follows that \(|\text{cd}(G)| = 3(k-1) \), showing that the bound of Theorem A can be no better than \(3(k-1) \).

Finally, observe that if, as in the preceding construction, we let \(\Delta = A \times B \) for groups \(A \) and \(B \) with \(\text{cd}(A) = \{1, 2, 3\} \) and \(\text{cd}(B) = \{1, 5, 11\} \), then \(\Delta \) satisfies \(P_4 \) and has \(|\text{cd}(\Delta)| = 9 \). Thus \(\Delta \) verifies the sharpness of the bound in the case \(k = 4 \) and completes our collection of examples for each of the exceptional cases of Theorem A.

References

Department of Mathematics, University of Wisconsin–Platteville, Platteville, Wisconsin 53818

E-mail address: benjamin@uwplatt.edu