Bohr’s power series theorem in several variables
HTML articles powered by AMS MathViewer
- by Harold P. Boas and Dmitry Khavinson
- Proc. Amer. Math. Soc. 125 (1997), 2975-2979
- DOI: https://doi.org/10.1090/S0002-9939-97-04270-6
- PDF | Request permission
Abstract:
Generalizing a classical one-variable theorem of Bohr, we show that if an $n$-variable power series has modulus less than $1$ in the unit polydisc, then the sum of the moduli of the terms is less than $1$ in the polydisc of radius $1/(3\sqrt n )$.References
- H. F. Bohnenblust and Einar Hille, On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600–622.
- Harald Bohr, A theorem concerning power series, Proc. London Math. Soc. (2) 13 (1914), 1–5.
- Seán Dineen and Richard M. Timoney, Absolute bases, tensor products and a theorem of Bohr, Studia Math. 94 (1989), no. 3, 227–234. MR 1019790, DOI 10.4064/sm-94-3-227-234
- Seán Dineen and Richard M. Timotey, On a problem of H. Bohr, Bull. Soc. Roy. Sci. Liège 60 (1991), no. 6, 401–404. MR 1162791
- Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
- Steven G. Krantz, Function theory of several complex variables, 2nd ed., The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. MR 1162310
- Anna Maria Mantero and Andrew Tonge, The Schur multiplication in tensor algebras, Studia Math. 68 (1980), no. 1, 1–24. MR 583398, DOI 10.4064/sm-68-1-1-24
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- S. Sidon, Über einen Satz von Herrn Bohr, Math. Z. 26 (1927), 731–732.
- M. Tomić, Sur un théorème de H. Bohr, Math. Scand. 11 (1962), 103–106 (French). MR 176040, DOI 10.7146/math.scand.a-10653
- N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Functional Analysis 16 (1974), 83–100. MR 0355642, DOI 10.1016/0022-1236(74)90071-8
Bibliographic Information
- Harold P. Boas
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843–3368
- MR Author ID: 38310
- ORCID: 0000-0002-5031-3414
- Email: boas@math.tamu.edu
- Dmitry Khavinson
- Affiliation: Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701
- MR Author ID: 101045
- Email: dmitry@comp.uark.edu
- Received by editor(s): May 8, 1996
- Additional Notes: The first author’s research was supported in part by NSF grant number DMS 9500916 and in part at the Mathematical Sciences Research Institute by NSF grant number DMS 9022140.
- Communicated by: Theodore W. Gamelin
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 2975-2979
- MSC (1991): Primary 32A05
- DOI: https://doi.org/10.1090/S0002-9939-97-04270-6
- MathSciNet review: 1443371