Hausdorff measures and dimension on $\mathbb {R}^\infty$
HTML articles powered by AMS MathViewer
- by Nieves Castro and Miguel Reyes
- Proc. Amer. Math. Soc. 125 (1997), 3267-3273
- DOI: https://doi.org/10.1090/S0002-9939-97-03944-0
- PDF | Request permission
Abstract:
We consider the Hausdorff measures $H^{s}$, $0 \leq s < \infty$, defined on $\mathbb {R} ^{\infty } = \prod _{i=1}^{\infty } \mathbb {R}$ with the topology induced by the metric \[ \rho (x,y) = \sum _{i=1}^{\infty } |x_{i}-y_{i}|/2^{i}(1+|x_{i}-y_{i}|),\] for all $x=(x_{i})_{i=1}^{\infty }, y=(y_{i})_{i=1}^{\infty } \in \mathbb {R} ^{\infty }$. We study its properties, their relation to the “Lebesgue measure" defined on $\mathbb {R} ^{\infty }$ by R. Baker in 1991, and the associated Hausdorff dimension. Finally, we give some examples.References
- Richard Baker, “Lebesgue measure” on $\textbf {R}^\infty$, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1023–1029. MR 1062827, DOI 10.1090/S0002-9939-1991-1062827-X
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
Bibliographic Information
- Nieves Castro
- Affiliation: Departamento de Matemática Aplicada, Facultad de Informática, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain
- Email: nieves@fi.upm.es
- Miguel Reyes
- Affiliation: Departamento de Matemática Aplicada, Facultad de Informática, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain
- Email: mreyes@fi.upm.es
- Received by editor(s): March 25, 1995
- Received by editor(s) in revised form: May 20, 1996
- Communicated by: J. Marshall Ash
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3267-3273
- MSC (1991): Primary 28A78
- DOI: https://doi.org/10.1090/S0002-9939-97-03944-0
- MathSciNet review: 1403116