HARMONIC POLYNOMIALS AND THE DIVISIBILITY PROBLEM

V. V. KARACHIK

(Communicated by J. Marshall Ash)

Abstract. An easy way to construct a first harmonic polynomial component of any polynomial is given.

If we tried to divide any polynomial \(P(x) \) \((x \in \mathbb{R}^n) \) by the polynomial \(L(x) \) using the ordinary Euclidean algorithm then for \(n > 1 \) we would meet the problem: What should be a residue? We would not find a reasonable answer if we were keeping in mind that the degree of a residue must be less than the degree of \(L(x) \). Nevertheless we may define a “division” of the polynomial \(P(x) \) by the polynomial \(L(x) \) by the equality \(P(x) = Q(x)L(x) + H(x) \), where the residue \(H(x) \) is determined not as a polynomial of degree less than degree of \(L(x) \) but as a polynomial solution of the equation \(L(D)H(x) = 0 \). Here operator \(L(D) \) is obtained from the polynomial \(L(x) \) by replacing each variable \(x_i \) on the differential operator \(\partial/\partial x_i \). In this case for each polynomial \(P(x) \) there exist the only polynomials \(Q(x) \) and \(H(x) \) such that the equality \(P(x) = Q(x)L(x) + H(x) \) holds under the condition \(L(D)H(x) = 0 \) [1].

If \(L(x) = |x|^2 = x_1^2 + \cdots + x_n^2 \) this fact was proved in [2]. The proof’s method of the above statement does not permit us to construct the polynomial \(H(x) \) by the polynomial \(P(x) \). In the general case it is not a simple problem. Let us consider an easy way to find the polynomial \(H(x) \) for the special form of the polynomial \(L(x) \), i.e., if \(L(x) = |x|^2 \) and \(n > 2 \).

Let \(L(D) \) be the Laplace operator, i.e., \(L(D) = \Delta \).

Lemma. Let \(H_m(x) \) be a homogeneous harmonic polynomial of \(m \)-th degree, \(H_m^*(x) \) be the Kelvin transformation of \(H_m(x) \) \((H_m^*(x) = |x|^{2-n}H_m(x/|x|^2)) \) and \((k,2)_m = k(k+2)\cdots(k+2m-2) \). If \(n > 2 \) and \(x \neq 0 \) then the following formula holds:

\[
H_m^*(x) = \frac{(-1)^m}{(n-2,2)_m}H_m(D)|x|^{2-n}.
\]

Proof. We shall employ the induction on \(m \). Set \(m = 1 \). Then for \(k = 1, \ldots, n \) we can easily write the equality

\[
\frac{\partial}{\partial x_k} \frac{|x|^{2-n}}{2-n} = \frac{1}{|x|^{n-2}} \frac{x_k}{|x|^2} = x_k^*,
\]

and therefore for \(m = 1 \) Eq.(1) is true.
Suppose that for \(m < k \) the lemma is true and prove it for \(m = k \). Let us use the Euler formula for homogeneous functions. We get

\[
H_k(x) = \sum_{i=1}^{n} \frac{x_i}{k} H_k^{(i)}(x),
\]

where \(H_k^{(i)}(x) = \partial/\partial x_i H_k(x) \). Obviously the polynomials \(H_k^{(i)}(x) \) are harmonic polynomials of degree \(k - 1 \). Making use of Eq.(2), by the induction hypotheses we can write

\[
H_k(D)|x|^{2-n} = \sum_{i=1}^{n} \frac{1}{k} \frac{\partial}{\partial x_i} H_k^{(i)}(D)|x|^{2-n}
\]

\[
= \sum_{i=1}^{n} \frac{(-1)^{k-1}}{k} (n-2,2)_{k-1} \frac{\partial}{\partial x_i} \left(H_k^{(i)} \right)^{*}(x).
\]

Keeping in mind that

\[
\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(H_k^{(i)} \right)^{*}(x) = -(2k + n - 4) \sum_{i=1}^{n} x_i H_k^{(i)}(x),
\]

we get

\[
H_k(D)|x|^{2-n} = (-1)^k (n-2,2)_{k-1}(2k + n - 4) \left(\sum_{i=1}^{n} \frac{x_i}{k} H_k^{(i)} \right)^{*}(x).
\]

Again, making use of Eq.(2) and observing that \((n-2,2)_{k-1}(2k + n - 4) = (n-2,2)_{k}\) we get Eq.(1), and the proof is complete.

Let \(P(x) \) be an arbitrary polynomial. Represent it in the form \(P(x) = \sum_{m} P_m(x) \).

Theorem. Suppose that \(P(x) = Q(|x|^2) + H(x) \) and \(H(x) \) is a harmonic polynomial. Then \(H(x) \) can be found from the equality

\[
H(x) = \sum_{m} (-1)^m \frac{|x|^{2m+n-2}}{(n-2,2)_m} P_m(D)|x|^{2-n}.
\]

Proof. Since \(P(x) = Q(|x|^2) + H(x) \), then for \(x \neq 0 \) we get

\[
P_m(D)|x|^{2-n} = H_m(D)|x|^{2-n}.
\]

If we take advantage of the lemma then we easily get the desired result.

References

[1] V. V. Karachik, O polinomialnyh reshenijah sistem linejnyh differenzialnyh uravnenij. Voprosi Vychislitelnoy i prikladnoy matematiki. v.82, Tashkent, 1987, s.41-48. MR 91f:34008