Exponentiation in power series fields
HTML articles powered by AMS MathViewer
- by Franz-Viktor Kuhlmann, Salma Kuhlmann and Saharon Shelah
- Proc. Amer. Math. Soc. 125 (1997), 3177-3183
- DOI: https://doi.org/10.1090/S0002-9939-97-03964-6
- PDF | Request permission
Abstract:
We prove that for no nontrivial ordered abelian group $G$ does the ordered power series field $\mathbb {R}((G))$ admit an exponential, i.e. an isomorphism between its ordered additive group and its ordered multiplicative group of positive elements, but that there is a non-surjective logarithm. For an arbitrary ordered field $k$, no exponential on $k((G))$ is compatible, that is, induces an exponential on $k$ through the residue map. This is proved by showing that certain functional equations for lexicographic powers of ordered sets are not solvable.References
- Norman L. Alling, On exponentially closed fields, Proc. Amer. Math. Soc. 13 (1962), 706–711. MR 141661, DOI 10.1090/S0002-9939-1962-0141661-0
- Isidore Fleischer, Maximality and ultracompleteness in normed modules, Proc. Amer. Math. Soc. 9 (1958), 151–157. MR 93693, DOI 10.1090/S0002-9939-1958-0093693-8
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- Harry Gonshor, An introduction to the theory of surreal numbers, London Mathematical Society Lecture Note Series, vol. 110, Cambridge University Press, Cambridge, 1986. MR 872856, DOI 10.1017/CBO9780511629143
- Hahn, H. Über die nichtarchimedischen Größensysteme, S.-B. Akad. Wiss. Wien, math.-naturw. Kl. Abt. IIa, 116 (1907), 601–655.
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Manfred Knebusch and Michael J. Wright, Bewertungen mit reeller Henselisierung, J. Reine Angew. Math. 286(287) (1976), 314–321 (German). MR 419419
- Kuhlmann, S. On the structure of nonarchimedean exponential fields I, Archive for Math. Logic 34 (1995), 145–182.
- Kuhlmann, F.-V. – Kuhlmann, S. On the structure of nonarchimedean exponential fields II, Comm. in Algebra 22(12) (1994), 5079–5103.
- Kuhlmann, F.-V. – Kuhlmann, S. The exponential rank of nonarchimedean exponential fields, preprint.
- Kuhlmann, F.-V. – Kuhlmann, S. – Shelah, S. Functional equations for lexicographic products, preprint.
- Detlef Laugwitz, Eine nichtarchimedische Erweiterung angeordneter Körper, Math. Nachr. 37 (1968), 225–236 (German). MR 242798, DOI 10.1002/mana.19680370308
- Laugwitz, D. Tullio Levi-Civita’s work on nonarchimedean structures, in: Tullio Levi-Civita, Convegno internazionale celebrativo del centenario della nascita, Academia Nazionale dei Lincei, Atti dei Convegni Lincei 8 (1973), 297–312.
- Levi-Civita, T. Sugli infiniti ed infinitesimi attuali quali elementi analitici (1892-1893), opere mathematiche, vol. 1, Bologna (1954), 1–39.
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Abraham Robinson, Function theory on some nonarchimedean fields, Amer. Math. Monthly 80 (1973), no. 6, 87–109. Papers in the foundations of mathematics. MR 330126, DOI 10.2307/3038223
Bibliographic Information
- Franz-Viktor Kuhlmann
- Affiliation: Mathematisches Institut der Universität Heidelberg, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany
- Email: fvk@harmless.mathi.uni-heidelberg.de
- Salma Kuhlmann
- Affiliation: Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
- MR Author ID: 293156
- Saharon Shelah
- MR Author ID: 160185
- ORCID: 0000-0003-0462-3152
- Email: shelah@sunrise.huji.ac.il
- Received by editor(s): January 31, 1996
- Received by editor(s) in revised form: May 18, 1996
- Additional Notes: The second author was supported by a Deutsche Forschungsgemeinschaft fellowship. The third author was partially supported by the Edmund Landau Center for research in Mathematical Analysis, and supported by the Minerva Foundation (Germany). Publication number 601.
- Communicated by: Andreas R. Blass
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3177-3183
- MSC (1991): Primary 12J15, 06A05; Secondary 12J25, 06F20
- DOI: https://doi.org/10.1090/S0002-9939-97-03964-6
- MathSciNet review: 1402868