Lempert mappings and symplectic forms
HTML articles powered by AMS MathViewer
- by Zoltan Balogh and Christoph Leuenberger
- Proc. Amer. Math. Soc. 125 (1997), 3289-3292
- DOI: https://doi.org/10.1090/S0002-9939-97-03990-7
- PDF | Request permission
Abstract:
We use Lempert’s version of Riemann mapping to construct non-equivalent symplectic forms on an ellipsoid in $\textbf {C}^n$.References
- B. Aebischer, M. Borer, M. Kälin, Ch. Leuenberger, and H. M. Reimann, Symplectic geometry, Progress in Mathematics, vol. 124, Birkhäuser Verlag, Basel, 1994. An introduction based on the seminar in Bern, 1992. MR 1296462, DOI 10.1007/978-3-0348-7512-7
- Y. Eliashberg, M. Gromov, Convex Symplectic Manifolds, Proceedings of Symposia in Pure Mathematics, 52 (1991), pp. 135-161.
- László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145
- D. McDuff, D. Salamon, Introduction to Symplectic Topology, Oxford Mathematical Monographs (1995).
- Stephen Semmes, A generalization of Riemann mappings and geometric structures on a space of domains in $\textbf {C}^n$, Mem. Amer. Math. Soc. 98 (1992), no. 472, vi+98. MR 1113614, DOI 10.1090/memo/0472
Bibliographic Information
- Zoltan Balogh
- Affiliation: Mathematics Institute, University of Berne, Sidlerstrasse 5, 3012 Berne, Switzerland
- Email: zoltan@math-stat.unibe.ch
- Christoph Leuenberger
- Affiliation: Mathematics Institute, University of Berne, Sidlerstrasse 5, 3012 Berne, Switzerland
- Email: leuenb@math-stat.unibe.ch
- Received by editor(s): May 20, 1996
- Communicated by: Eric Bedford
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3289-3292
- MSC (1991): Primary 32F05; Secondary 53C15
- DOI: https://doi.org/10.1090/S0002-9939-97-03990-7
- MathSciNet review: 1416075