Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Perturbations of the Haar wavelet
HTML articles powered by AMS MathViewer

by N. K. Govil and R. A. Zalik PDF
Proc. Amer. Math. Soc. 125 (1997), 3363-3370 Request permission

Abstract:

Let $m \in Z^+$ be given. For any $\varepsilon > 0$ we construct a function $f^{\{\varepsilon \}}$ having the following properties: (a) $f^{\{\varepsilon \}}$ has support in $[-\varepsilon , 1 + \varepsilon ]$. (b) $f^{\{\varepsilon \}} \in C^m(-\infty , \infty )$. (c) If $h$ denotes the Haar function and $0<\delta <\infty$, then $\Vert f^{\{\varepsilon \}} - h \Vert _{L^\delta (\mathcal R)} \le (1+2^\delta )^{1/\delta }(2\varepsilon )^{1/\delta }$. (d) $f^{\{\varepsilon \}}$ generates an affine Riesz basis whose frame bounds (which are given explicitly) converge to $1$ as $\varepsilon \rightarrow 0$.
References
  • John J. Benedetto and David F. Walnut, Gabor frames for $L^2$ and related spaces, Wavelets: mathematics and applications, Stud. Adv. Math., CRC, Boca Raton, FL, 1994, pp. 97–162. MR 1247515
  • Charles K. Chui, An introduction to wavelets, Wavelet Analysis and its Applications, vol. 1, Academic Press, Inc., Boston, MA, 1992. MR 1150048
  • Charles K. Chui and Xian Liang Shi, Bessel sequences and affine frames, Appl. Comput. Harmon. Anal. 1 (1993), no. 1, 29–49. MR 1256525, DOI 10.1006/acha.1993.1003
  • Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
  • S. J. Favier and R. A. Zalik, On the stability of frames and Riesz bases, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 160–173. MR 1325538, DOI 10.1006/acha.1995.1012
  • K. Gröchenig, Acceleration of the frame algorithm, IEEE Trans. Signal Proc. 41 (1993), 3331–3340.
  • Christian Houdré, Wavelets, probability, and statistics: some bridges, Wavelets: mathematics and applications, Stud. Adv. Math., CRC, Boca Raton, FL, 1994, pp. 365–398. MR 1247521
  • Xian Liang Shi, On $\Lambda$BMV functions with some applications to theory of Fourier series, Sci. Sinica Ser. A 28 (1985), no. 2, 147–158. MR 795170
  • I. J. Schoenberg, Cardinal spline interpolation, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. MR 0420078
  • G. Strang and T. Nguyen, “Wavelets and Filter Banks”, Wellesley–Cambridge Press, Wellesley, Massachussetts, 1996.
  • Robert M. Young, An introduction to nonharmonic Fourier series, Pure and Applied Mathematics, vol. 93, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 591684
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 42C99, 41A05, 46C99
  • Retrieve articles in all journals with MSC (1991): 42C99, 41A05, 46C99
Additional Information
  • N. K. Govil
  • Affiliation: Department of Mathematics, Auburn University, Auburn, Alabama 36849–5310
  • Email: govilnk@mail.auburn.edu
  • R. A. Zalik
  • Affiliation: Department of Mathematics, Auburn University, Auburn, Alabama 36849–5310
  • Email: zalik@mail.auburn.edu
  • Received by editor(s): March 18, 1996
  • Received by editor(s) in revised form: June 21, 1996
  • Additional Notes: The authors are grateful to Ole Christensen, Sergio J. Favier, Christopher E. Heil, and Luis Miguel Pozo Coronado for their helpful comments.
  • Communicated by: Palle E. T. Jorgensen
  • © Copyright 1997 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 125 (1997), 3363-3370
  • MSC (1991): Primary 42C99; Secondary 41A05, 46C99
  • DOI: https://doi.org/10.1090/S0002-9939-97-04002-1
  • MathSciNet review: 1416087