Perturbations of the Haar wavelet
Authors:
N. K. Govil and R. A. Zalik
Journal:
Proc. Amer. Math. Soc. 125 (1997), 3363-3370
MSC (1991):
Primary 42C99; Secondary 41A05, 46C99
DOI:
https://doi.org/10.1090/S0002-9939-97-04002-1
MathSciNet review:
1416087
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $m \in Z^+$ be given. For any $\varepsilon > 0$ we construct a function $f^{\{\varepsilon \}}$ having the following properties: (a) $f^{\{\varepsilon \}}$ has support in $[-\varepsilon , 1 + \varepsilon ]$. (b) $f^{\{\varepsilon \}} \in C^m(-\infty , \infty )$. (c) If $h$ denotes the Haar function and $0<\delta <\infty$, then $\Vert f^{\{\varepsilon \}} - h \Vert _{L^\delta (\mathcal R)} \le (1+2^\delta )^{1/\delta }(2\varepsilon )^{1/\delta }$. (d) $f^{\{\varepsilon \}}$ generates an affine Riesz basis whose frame bounds (which are given explicitly) converge to $1$ as $\varepsilon \rightarrow 0$.
- John J. Benedetto and David F. Walnut, Gabor frames for $L^2$ and related spaces, Wavelets: mathematics and applications, Stud. Adv. Math., CRC, Boca Raton, FL, 1994, pp. 97–162. MR 1247515
- Charles K. Chui, An introduction to wavelets, Wavelet Analysis and its Applications, vol. 1, Academic Press, Inc., Boston, MA, 1992. MR 1150048
- Charles K. Chui and Xian Liang Shi, Bessel sequences and affine frames, Appl. Comput. Harmon. Anal. 1 (1993), no. 1, 29–49. MR 1256525, DOI https://doi.org/10.1006/acha.1993.1003
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107
- S. J. Favier and R. A. Zalik, On the stability of frames and Riesz bases, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 160–173. MR 1325538, DOI https://doi.org/10.1006/acha.1995.1012
- K. Gröchenig, Acceleration of the frame algorithm, IEEE Trans. Signal Proc. 41 (1993), 3331–3340.
- Christian Houdré, Wavelets, probability, and statistics: some bridges, Wavelets: mathematics and applications, Stud. Adv. Math., CRC, Boca Raton, FL, 1994, pp. 365–398. MR 1247521
- Xian Liang Shi, On $\Lambda $BMV functions with some applications to theory of Fourier series, Sci. Sinica Ser. A 28 (1985), no. 2, 147–158. MR 795170
- I. J. Schoenberg, Cardinal spline interpolation, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12. MR 0420078
- G. Strang and T. Nguyen, “Wavelets and Filter Banks”, Wellesley–Cambridge Press, Wellesley, Massachussetts, 1996.
- Robert M. Young, An introduction to nonharmonic Fourier series, Pure and Applied Mathematics, vol. 93, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 591684
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 42C99, 41A05, 46C99
Retrieve articles in all journals with MSC (1991): 42C99, 41A05, 46C99
Additional Information
N. K. Govil
Affiliation:
Department of Mathematics, Auburn University, Auburn, Alabama 36849–5310
Email:
govilnk@mail.auburn.edu
R. A. Zalik
Affiliation:
Department of Mathematics, Auburn University, Auburn, Alabama 36849–5310
Email:
zalik@mail.auburn.edu
Keywords:
Frames,
affine frames,
Riesz bases,
Haar wavelet,
basis perturbations,
$\wedge$-bounded mean variation,
cardinal splines
Received by editor(s):
March 18, 1996
Received by editor(s) in revised form:
June 21, 1996
Additional Notes:
The authors are grateful to Ole Christensen, Sergio J. Favier, Christopher E. Heil, and Luis Miguel Pozo Coronado for their helpful comments.
Communicated by:
Palle E. T. Jorgensen
Article copyright:
© Copyright 1997
American Mathematical Society