On the diophantine equation $x^2-2^m=\pm y^n$
HTML articles powered by AMS MathViewer
- by Yann Bugeaud
- Proc. Amer. Math. Soc. 125 (1997), 3203-3208
- DOI: https://doi.org/10.1090/S0002-9939-97-04093-8
- PDF | Request permission
Abstract:
One of the purposes of this note is to correct the proof of a recent result of Y. Guo & M. Le on the equation $x^{2} - 2^{m} = y^{n}$. Moreover, we prove that the diophantine equation $x^{2} - 2^{m} = \pm y^{n}$, $x$, $y$, $m$, $n \in \mathbf {N}$, gcd$(x, y) =1$, $y>1$, $n>2$ has only finitely many solutions, all of which satisfying $n \le 7.3 10^{5}$.References
- Y. Bugeaud and M. Laurent, Minoration effective de la distance $p$-adique entre puissances de nombres algébriques, J. Number Th. 61 (1996), 311–342.
- Yongdong Guo and Mao Hua Le, A note on the exponential Diophantine equation $x^2-2^m=y^n$, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3627–3629. MR 1291786, DOI 10.1090/S0002-9939-1995-1291786-3
- Seppo Hyyrö, Über das Catalansche Problem, Ann. Univ. Turku. Ser. A I 79 (1964), 10 (German). MR 179127
- S. V. Kotov, Über die maximale Norm der Idealteiler des Polynoms $ax^{m}+\beta y^{n}$ mit den algebraischen Koeffizienten, Acta Arith. 31 (1976), no. 3, 219–230. MR 427226, DOI 10.4064/aa-31-3-219-230
- Michel Laurent, Maurice Mignotte, and Yuri Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation, J. Number Theory 55 (1995), no. 2, 285–321 (French, with English summary). MR 1366574, DOI 10.1006/jnth.1995.1141
- Maohua Le, The Diophantine Equation $x^{2} + D^{m} = 2^{n+ 2}$, Comment. Univ. St Pauli 43 (1994), 127–133.
- T. N. Shorey, A. J. Van der Poorten, R. Tijdeman, and A. Schinzel, Applications of the Gel′fond-Baker method to Diophantine equations, Transcendence theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976) Academic Press, London, 1977, pp. 59–77. MR 0472689
Bibliographic Information
- Yann Bugeaud
- Affiliation: Université Louis Pasteur, U. F. R. de mathématiques, 7, rue René Descartes, 67084 Strasbourg, France
- Address at time of publication: 31 rue de l’Etang, 56600 Lanester, France
- Email: bugeaud@pari.u-strasbg.fr
- Received by editor(s): June 13, 1996
- Communicated by: William W. Adams
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3203-3208
- MSC (1991): Primary 11D61, 11J86
- DOI: https://doi.org/10.1090/S0002-9939-97-04093-8
- MathSciNet review: 1422850