Incompleteness of the linear span of the positive compact operators
HTML articles powered by AMS MathViewer
- by Z. L. Chen and A. W. Wickstead
- Proc. Amer. Math. Soc. 125 (1997), 3381-3389
- DOI: https://doi.org/10.1090/S0002-9939-97-04220-2
- PDF | Request permission
Abstract:
We show that even in the case of a Banach lattice $E$ with an order continuous norm (or whose dual has an order continuous norm) the linear span of the positive compact operators on $E$ need not be complete under the regular norm.References
- Y. A. Abramovich and A. W. Wickstead, A compact regular operator without modulus, Proc. Amer. Math. Soc. 116 (1992), no. 3, 721–726. MR 1098395, DOI 10.1090/S0002-9939-1992-1098395-7
- Y. A. Abramovich and A. W. Wickstead, Recent results on the order structure of compact operators, Irish Math. Soc. Bull. 32 (1994), 32–45. MR 1286401
- Y. A. Abramovich and A. W. Wickstead, Solutions of several problems in the theory of compact positive operators, Proc. Amer. Math. Soc. 123 (1995), no. 10, 3021–3026. MR 1283534, DOI 10.1090/S0002-9939-1995-1283534-8
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- Wolfgang Arendt, On the $\textrm {o}$-spectrum of regular operators and the spectrum of measures, Math. Z. 178 (1981), no. 2, 271–287. MR 631633, DOI 10.1007/BF01262044
- W. Arendt and A. R. Sourour, Ideals of regular operators on $l^{2}$, Proc. Amer. Math. Soc. 88 (1983), no. 1, 93–96. MR 691284, DOI 10.1090/S0002-9939-1983-0691284-3
- W. Arendt and A. R. Sourour, Perturbation of regular operators and the order essential spectrum, Nederl. Akad. Wetensch. Indag. Math. 48 (1986), no. 2, 109–122. MR 849713
- P. G. Dodds and D. H. Fremlin, Compact operators in Banach lattices, Israel J. Math. 34 (1979), no. 4, 287–320 (1980). MR 570888, DOI 10.1007/BF02760610
- Ulrich Krengel, Über den Absolutbetrag stetiger linearer Operatoren und seine Anwendung auf ergodische Zerlegungen, Math. Scand. 13 (1963), 151–187 (German). MR 176034, DOI 10.7146/math.scand.a-10697
- Ulrich Krengel, Remark on the modulus of compact operators, Bull. Amer. Math. Soc. 72 (1966), 132–133. MR 190752, DOI 10.1090/S0002-9904-1966-11452-0
- Peter Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. MR 1128093, DOI 10.1007/978-3-642-76724-1
- Heinrich Raubenheimer, The $o$-spectrum of $r$-asymptotically quasifinite-rank operators, Quaestiones Math. 7 (1984), no. 3, 299–303. MR 771655
- Heinrich Raubenheimer, $r$-asymptotically quasifinite rank operators and the spectrum of measures, Quaestiones Math. 10 (1986), no. 1, 97–111. MR 857772
- A. W. Wickstead, Spaces of operators with the Riesz separation property, Indag. Math. (N.S.) 6 (1995), no. 2, 235–245. MR 1338329, DOI 10.1016/0019-3577(95)91246-R
- A. W. Wickstead, Converses for the Dodds-Fremlin and Kalton-Saab theorems, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 1, 175–179. MR 1373356, DOI 10.1017/S0305004100074752
Bibliographic Information
- Z. L. Chen
- Affiliation: Department of Pure Mathematics, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland
- A. W. Wickstead
- Affiliation: Department of Pure Mathematics, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland
- MR Author ID: 182585
- Email: A.Wickstead@qub.ac.uk
- Received by editor(s): June 26, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3381-3389
- MSC (1991): Primary 47B65; Secondary 47B07
- DOI: https://doi.org/10.1090/S0002-9939-97-04220-2
- MathSciNet review: 1443816