TRIEBEL-LIZORKIN SPACES ASSOCIATED WITH LAGUERRE AND HERMITE EXPANSIONS

JACEK DZIUBAŃSKI

(Communicated by Palle E. T. Jorgensen)

Abstract. It is proved that Triebel-Lizorkin spaces for some Laguerre and Hermite expansions are well-defined.

1. Introduction

Let D be a self-adjoint positive operator acting on $L^2(\mathbb{R})$, and let dE be its spectral resolution, that is,

$$Df = \int_0^\infty \lambda dE(\lambda)f.$$ (1.1)

For $\alpha \in \mathbb{R}$, $0 < p, q < \infty$, and a C^∞ function φ satisfying

$$\text{supp } \varphi \subset [1/2, 2], \quad |\varphi(\lambda)| > c > 0 \quad \text{for } \lambda \in [3/4, 7/4],$$ (1.2)

we define the Triebel-Lizorkin norm associated with D (and with φ) by

$$\|f\|_{D^\alpha_{pq}(\varphi)} = \left\| \sum_{\mu \in \mathbb{Z}} (2^{\mu \alpha}|Q_\mu f|)^q \right\|^{1/q}_{L^p(X)},$$ (1.3)

where

$$Q_\mu f = \varphi(2^{-\mu}D)f = \int_0^\infty \varphi(2^{-\mu}\lambda)dE(\lambda)f.$$ (1.4)

Note that if $D = \Delta = -\sum_{j=1}^d \frac{\partial^2}{\partial x_j^2}$ is the Laplacian on \mathbb{R}^d, then the norm $\|f\|_{\Delta^\alpha_{pq}(\varphi)}$ is equivalent to the classical Triebel-Lizorkin norm $\|f\|_{F^\alpha_{pq}}$.

Triebel-Lizorkin spaces associated with the one-dimensional Hermite operator

$$\mathcal{H} = -\frac{\partial^2}{\partial x^2} + x^2$$

were studied by J. Epperson in [E1] and [E2]. It was proved there, using Mehler’s formula, that the definition of the corresponding space $F^\alpha_{\mathcal{H}^sigma}$ is independent of the particular choice of the function φ.

The present paper continues these studies. We consider Triebel-Lizorkin spaces associated with some Laguerre expansions and multidimensional Hermite expansions. We use some ideas from [E1] combined with Heisenberg group methods (cf. [HJ]). Symbolic calculus for sublaplacians on Heisenberg groups (cf. Theorem 2.3) plays an essential role in our paper.

Received by the editors May 15, 1996.
1991 Mathematics Subject Classification. Primary 42C10; Secondary 42C15, 22E10, 42B25.
2. Symbolic calculus on Heisenberg groups

Let \(\mathbb{H}_d \) be the \(2d + 1 \) dimensional Heisenberg group, that is, \(\mathbb{H}_d = \mathbb{C}^d \times \mathbb{R} \) with the multiplication \(hh' = (z,t)(z',t') = (z+z', t+t' + \frac{1}{2} \Im(z\bar{z}')) \). Let \(X_j, Y_j \) be the elements of the Lie algebra of \(\mathbb{H}_d \) which we identify with the left-invariant vector fields
\[
X_j = \frac{\partial}{\partial x_j} - \frac{1}{2} y_j \frac{\partial}{\partial t}, \quad Y_j = \frac{\partial}{\partial y_j} + \frac{1}{2} x_j \frac{\partial}{\partial t}.
\]
(2.1)

The corresponding right-invariant vector fields are:
\[
\tilde{X}_j = \frac{\partial}{\partial x_j} + \frac{1}{2} y_j \frac{\partial}{\partial t}, \quad \tilde{Y}_j = \frac{\partial}{\partial y_j} - \frac{1}{2} x_j \frac{\partial}{\partial t}.
\]
(2.2)

The sublaplacian \(L \) on \(\mathbb{H} \) defined by
\[
L = -\sum_{j=1}^{d} X_j^2 + Y_j^2
\]
is a positive, homogeneous of degree 2, left-invariant subelliptic differential operator. Let \(dE \) be the spectral resolution for \(L \), that is, \(Lf = \int_0^\infty \lambda dE(\lambda) f \). If \(m \) is a bounded function on \((0, \infty)\), then the operator
\[
m(L)f = \int_0^\infty m(\lambda)dE(\lambda)f
\]
is left-invariant and bounded on \(L^2(\mathbb{H}_d) \).

The following theorem due to Hulanicki (cf. \[H\]) is the basic tool in our paper.

Theorem 2.3. If \(m \in S(\mathbb{R}) \), then
\[
m(L)f = f * M,
\]
(2.4)

with \(M \) in the Schwartz space \(S(\mathbb{H}_d) \) of functions on \(\mathbb{H}_d \).

Moreover, if for \(s > 0 \) we set \(m^s(\lambda) = m(s\lambda) \), then
\[
m^s(L)f = f * M_s,
\]
(2.5)

where
\[
M_s(h) = M_s(z,t) = s^{-Q/2} M\left(\frac{z}{\sqrt{s}}, \frac{t}{s}\right).
\]
(2.6)

Here \(Q = 2d + 2 \) is the homogeneous dimension of \(\mathbb{H}_d \).

3. Laguerre functions

Let
\[
L_k^m(w) = (2\pi)^{-1/2} \left(\frac{k!}{(k+m)!} \right)^{1/2} w^{m/2} L_k^m(\sqrt{w}) e^{-w/2}, \quad w > 0,
\]
(3.1)

be the Laguerre function of type \(m \), \(m = 0, 1, 2, ... \), where
\[
L_k^m(w) = \sum_{j=0}^{k} \binom{k+m}{k-j} \frac{(-w)^j}{j!}
\]
(3.2)

is the corresponding Laguerre polynomial of type \(m \), \(m = 0, 1, 2, ... \).

Let \(\mathbb{H}/\Gamma \) denote the reduced Heisenberg group, where \(\Gamma = \{(0,2\pi n) : n \in \mathbb{Z}\} \) is a normal discrete central subgroup of \(\mathbb{H} = \mathbb{H}_1 \). For \(p > 0 \) and nonnegative integer
we consider the space $L^p_m(\mathbb{H}/\Gamma)$ which consists of L^p functions f which have the form
\begin{equation}
 f(z,t) = e^{it}e^{-im\theta}f_0(r), \quad z = re^{i\theta}.
\end{equation}

It is well known (cf. [T]) that if a C^2 function f on \mathbb{H}/Γ has the form (3.3), then Lf is of the same form, where $L = -X^2 - Y^2$ is the sublaplacian on \mathbb{H}/Γ. Moreover, the functions
\begin{equation}
 \phi_k^m(z,u) = e^{iu}e^{-im\theta}L_k^m(|z|^2/2)
\end{equation}
form an orthonormal basis of $L^2_m(\mathbb{H}/\Gamma)$, and
\begin{equation}
 L\phi_k^m = d_k\phi_k^m, \quad \text{where } d_k = 2k + 1.
\end{equation}

Note that the map $W : L^p(\mathbb{R}^+) \to L^p_m(\mathbb{H}/\Gamma)$ given by
\begin{equation}
 f(z,u) = (Wg)(z,u) = e^{iu}e^{-im\theta}g(|z|^2/2), \quad \text{where } z = e^{i\theta}|z|,
\end{equation}
is an isometry from $L^p(\mathbb{R}^+)$ onto $L^p_m(\mathbb{H}/\Gamma)$. If, moreover, f and g are related by (3.6), then
\begin{equation}
 \langle g, L_m^m \rangle = \langle f, \phi_k^m \rangle.
\end{equation}
Consequently, if $g = \sum_k \langle g, L_k^m \rangle L_k^m$, then
\begin{equation}
 Wg = \sum_k (Wg, \phi_k^m)\phi_k^m.
\end{equation}

4. Triebel-Lizorkin spaces for Laguerre expansions

Let φ be a C^∞ function satisfying (1.2). We define the linear operators Q_μ on $L^2(\mathbb{R}^+)$ by
\begin{equation}
 Q_\mu L_k^m = \varphi(2^{-\mu}d_k)L_k^m.
\end{equation}
For $g = \sum_k a_k L_k^m$, $0 < p, q < \infty$, and $\alpha \in \mathbb{R}$, the Triebel-Lizorkin norm $\|g\|_{L^\alpha_q(\varphi)}$ is defined by
\begin{equation}
 \|g\|_{L^\alpha_q(\varphi)} = \left\| \left[\sum_{\mu \in \mathbb{Z}} (2^{\mu\alpha}|Q_\mu g|)^q \right]^{1/q} \right\|_{L^p(\mathbb{R}^+)).
\end{equation}

On the space $L^2_m(\mathbb{H}/\Gamma)$ we define the corresponding operators \hat{Q}_μ by setting
\begin{equation}
 \hat{Q}_\mu \phi_k^m = \varphi(2^{-\mu}d_k)\phi_k^m.
\end{equation}
 Obviously for f and g related by (3.6),
\begin{equation}
 \|g\|_{L^\alpha_q(\varphi)} = \left\| \left[\sum_{\mu \in \mathbb{Z}} (2^{\mu\alpha}|\hat{Q}_\mu f|)^q \right]^{1/q} \right\|_{L^p(\mathbb{H}/\Gamma)}.
\end{equation}

Our goal in this section is the following

Theorem A. Let $\alpha \in \mathbb{R}$, $0 < p < \infty$, and $0 < q < \infty$. If $\varphi^{(1)}$ and $\varphi^{(2)}$ are two C^∞ functions satisfying (1.2), then there exists a constant C such that
\begin{equation}
 C^{-1}\|g\|_{L^\alpha_q(\varphi^{(1)})} \leq \|g\|_{L^\alpha_q(\varphi^{(2)})} \leq C\|g\|_{L^\alpha_q(\varphi^{(1)})}.
\end{equation}
On the reduced Heisenberg group \mathbb{H}/Γ let $d((z, t), (z', t'))$ be a distance function given by

$$d((z, t), (z', t')) = \inf_{n \in \mathbb{Z}} \{(z, t)^{-1}(z', t')(0, 2\pi n)\},$$

where $|(z, t)| = |z| + |t|^{1/2}$ is a homogeneous norm on \mathbb{H}.

For $a > 0$ and f of the form (3.3) we define an analogue of the Peetre maximal operator:

$$\tilde{A}_\mu f(z, t) = \sup_{(z', t') \in \mathbb{H}/\Gamma} \frac{|\tilde{Q}_\mu f(z', t')|}{(1 + 2\mu^2 d((z, t), (z', t'))^a)}.$$

Note that if

$$\tilde{A}_\mu f(z) = \sup_{z' \in \mathbb{R}^2} \frac{|\tilde{Q}_\mu f(z', 0)|}{(1 + 2\mu^2 |z - z'|^a)},$$

then

$$\tilde{A}_\mu f(z) = \tilde{A}_\mu f(z, t).$$

Let

$$\tilde{B}_\mu f(z, t) = \sup_{(z', t') \in \mathbb{H}/\Gamma} \frac{|
abla \tilde{Q}_\mu f(z', t')|}{(1 + 2\mu^2 d((z, t), (z', t'))^a)},$$

where $|
abla \tilde{Q}_\mu f(z', t')| = |X \tilde{Q}_\mu f(z', t')| + |Y \tilde{Q}_\mu f(z', t')|.$

Lemma 4.10. For every $a > 0$ there is a constant $C > 0$ such that

$$\tilde{B}_\mu f(z, t) \leq C 2^{\mu/2} \tilde{A}_\mu f(z, t).$$

Proof. Let ψ be a C^∞ function satisfying (1.2) such that

$$\sum_{\mu \in \mathbb{Z}} \psi(2^{-\mu} \lambda) \varphi(2^{-\mu} \lambda) = 1 \quad \text{for} \quad \lambda > 0.$$

For the function $\zeta(\lambda) = \sum_{j=-1}^{\infty} \varphi(2^j \lambda) \psi(2^j \lambda)$ we denote by $M_{2^{-\mu}}(z, t)$ the convolution kernel on \mathbb{H} that corresponds to the operator $\zeta(2^{-\mu} L)$, where L is the sublaplacian on \mathbb{H}. By Theorem 2.3

$$|X \tilde{Q}_\mu f(z, t)| = |X \int_{\mathbb{H}/\Gamma} \sum_{n \in \mathbb{Z}} \tilde{Q}_\mu f(z', t') M_{2^{-\mu}}((z', t')^{-1}(z, t)(0, 2\pi n)) dz' dt'|$$

$$= \left| 2^{5\mu/2} \int_{\mathbb{R}^2} \int_{\mathbb{R}} (\pi M)(2^{\mu/2}(z - z'), 2^{\mu}(t - t' - \frac{1}{2}\Delta(z' \bar{z}) + 2\pi n)) \times \tilde{Q}_\mu f(z', t') dz' dt' \right|$$

$$\leq 2^{5\mu/2} \int_{\mathbb{R}^2} \int_{\mathbb{R}} |(\pi M)(2^{\mu/2}(z - z'), 2^{\mu}(-t'))| \tilde{Q}_\mu f(z', 0)| dz' dt'$$

$$\leq C h 2^{3\mu/2} \int_{\mathbb{R}^2} (1 + 2^{\mu/2}|z - z'| - b|\tilde{Q}_\mu f(z', 0)|)| dz'$$

$$\leq C h 2^{\mu/2} \tilde{A}_\mu f(z'')(1 + 2^{\mu/2}|z'' - z|)^a.$$

Similarly,

$$|Y \tilde{Q}_\mu f(z, t)| \leq C h 2^{\mu/2} \tilde{A}_\mu f(z'')(1 + 2^{\mu/2}|z'' - z|)^a.$$

Now, applying (4.8), we get (4.11).
Lemma 4.13. \(\tilde{A}_\mu f(z,t) \leq C[M(\tilde{Q}_\mu f)|^r](z)^{1/r} \), where \(M \) is the classical Hardy-Littlewood maximal operator on \(\mathbb{R}^2 \) and \(r = 2/a \).

Proof. We conclude from the main value theorem for stratified groups (cf. [FS], Theorem 1.41) that there is a constant \(C \) such that for \(h_3 \in B_0(2^{-\mu/2}\delta) \)
\[
|\tilde{Q}_\mu f(h_1 h_2)| \leq C|\tilde{Q}_\mu f(h_1 h_2 h_3)| + C2^{-\mu/2}\delta \sup_{a \in B_0(C2^{-\frac{\mu}{2}\delta})} |\nabla \tilde{Q}_\mu f(h_1 h_2 h_4)|.
\]
This gives
\[
|\tilde{Q}_\mu f(h_1 h_2)| \leq C \left(\left| B_0(2^{-\mu/2}\delta) \right|^{-1} \int_{B_0(2^{-\mu/2}\delta)} \left| \tilde{Q}_\mu f(h_1 h_2 h_3) \right|^r dh_3 \right)^{1/r} + C2^{-\mu/2}\delta \sup_{h_4 \in B_0(C2^{-\frac{\mu}{2}\delta})} \left(\left| \nabla \tilde{Q}_\mu f(h_1 h_2 h_4) \right| (1 + 2\mu/2d(0, h_2 h_4))^a \right)
\]
\[
\leq C \left(\left| B_0(2^{-\mu/2}\delta) \right|^{-1} \int_0^{\min(2\delta, 2^{-\frac{\mu}{2}\delta})} \int_{|z_3| < 2^{-\frac{\mu}{2}\delta}} \left| \tilde{Q}_\mu f(h_1 h_2 h_3) \right|^r dh_3 \right)^{1/r} + C2^{-\mu/2}\delta \sup_{h_4 \in B_0(C2^{-\frac{\mu}{2}\delta})} \left(1 + 2\mu/2d(0, h_2 h_4) \right)^a
\]
\[
\leq C \left(2^{-\mu/2}\delta \right)^{-2} \int_{|z_3| < 2^{-\frac{\mu}{2}\delta}} \left| \tilde{Q}_\mu f(z_1 + z_2 + z_3) \right|^r dz_3 \quad \text{and} \quad C2^{-\mu/2}\delta (1 + \delta + 2\mu/2d(0, h_2))^a \tilde{B}_\mu f(h_1).
\]
Using Lemma 4.10, we get
\[
|\tilde{Q}_\mu f(h_1 h_2)| \leq C \left(\frac{2^{-\mu/2}\delta + |z_2|^2}{2^{-\mu/2}\delta} \right)^{1/r} \left(\frac{1}{2^{-\mu/2}\delta + |z_2|^2} \int_{|z_3| < 2^{-\frac{\mu}{2}\delta} + |z_2|} \left| \tilde{Q}_\mu f(z_1 + z_3) \right|^r dz_3 \right)^{1/r} + C\delta (1 + \delta + 2\mu/2d(0, h_2))^a \tilde{A}_\mu f(h_1).
\]
Finally there is a constant \(C \) such that for any \(\delta \in (0, 1) \)
\[
|\tilde{Q}_\mu f(h_1 h_2)| \leq C\delta^{-2/r} \left(1 + 2\mu/2d(0, h_2) \right)^{2/r} (M(\tilde{Q}_\mu f(z_1)|^r) \right)^{1/r} + C\delta (1 + 2\mu/2d(0, h_2))^a \tilde{A}_\mu f(h_1),
\]
which completes the proof of the lemma. \(\square \)

Proof of Theorem A. Let \(0 < r < \min\{p, q\} \) and \(a = 2/r \). For \(\varphi^{(2)} \) let \(\psi^{(2)} \) be a \(C^\infty \) function satisfying (1.2) such that (4.12) holds. If \(\tilde{R}_\nu^{(2)} \) is the linear operator determined by \(\tilde{R}_\nu^{(2)} \phi_k^{(m)} = \psi^{(2)}(2^{-\nu}d_k)\phi_k^{(m)} \), then
\[
(4.14) \quad \tilde{Q}_\mu^{(1)} = \sum_{\nu=\mu}^{\mu+1} \tilde{Q}_\mu^{(1)} \tilde{R}_\nu^{(2)} \tilde{Q}_\nu^{(2)}.
\]
By Theorem 2.3 the kernels $K_{\nu,\mu}((z,t), (z',t'))$ of the operators $\tilde{Q}_{\mu}^{(1)} \tilde{R}_{\nu}^{(2)}$, $|\nu-\mu| \leq 1$, are bounded by $C_b 2^{b2/2} (1 + 2^{\nu/2} |z' - z|)^{-b}$, thus

$$|\tilde{Q}_{\mu}^{(1)} f(z,t)| \leq C_b \sum_{\nu = \mu}^{\mu+1} \int_{\mathbb{R}^d} 2^{b2/2} (1 + 2^{\nu/2} |z' - z|)^{-b} \tilde{A}_{\nu}^{(2)} f(z) \, dz' \leq C_b \sum_{\nu = \mu}^{\mu+1} \tilde{A}_{\nu}^{(2)} f(z).$$

From Lemma 4.13 we conclude

$$|\tilde{Q}_{\mu}^{(1)} f(z,t)| \leq C \sum_{\nu = \mu}^{\mu+1} [\mathcal{M}(|\tilde{Q}_{\nu}^{(2)} f|^r)(z)]^{1/r}.$$

Using the Fefferman-Stein vector-valued maximal inequality, we get

$$\|f\|_{H_{\nu}^{\alpha,q}(\varphi^{(1)})} \leq C \left(\sum_{\nu = -\infty}^{\infty} (2^{\mu\alpha} [\mathcal{M}(|\tilde{Q}_{\nu}^{(2)} f|^r)(z)]^{1/r})^q \right)^{1/q} \|f\|_{L^p} \leq C \|f\|_{H_{\nu}^{\alpha,q}(\varphi^{(2)})}. \quad \square$$

5. TRIEBEL-LIZORKIN SPACES ASSOCIATED WITH THE HERMITE OPERATOR

Let

$$H = -\Delta + |x|^2$$

be the Hermite operator on \mathbb{R}^d. Our main goal in the present section is to prove the following theorem which states that the definition of the Triebel-Lizorkin space $H_{\nu}^{\alpha,q}(\varphi)$ does not depend on the particular choice of φ (cf. (1.3)).

Theorem B. Let $\alpha \in \mathbb{R}$, $0 < p < \infty$, and $0 < q < \infty$. If $\varphi^{(1)}$ and $\varphi^{(2)}$ are two C^∞ functions satisfying (1.2), then there exists a constant C such that

$$C^{-1} \|f\|_{H_{\nu}^{\alpha,q}(\varphi^{(1)})} \leq \|f\|_{H_{\nu}^{\alpha,q}(\varphi^{(2)})} \leq C \|f\|_{H_{\nu}^{\alpha,q}(\varphi^{(1)})}.$$

Let h_m be normalized eigenfunctions of H with corresponding eigenvalues a_m, that is, $H h_m = a_m h_m$.

For $m \in \mathcal{S}(\mathbb{R})$, where $\mathcal{S}(\mathbb{R})$ is the Schwartz class of functions on \mathbb{R}, and $\mu \in \mathbb{Z}$ define

$$(5.1) \quad Q_{\mu} = m(2^{-\mu} H).$$

Then

$$(5.2) \quad Q_{\mu} h_m = m(2^{-\mu} a_m) h_m.$$

Obviously, for $f = \sum_m (f, h_m) h_m$, we have

$$Q_{\mu} f(x) = \sum_m m(2^{-\mu} a_m) (f, h_m) h_m(x) = \int_{\mathbb{R}^d} f(y) K_{\mu}(x,y) \, dy,$$

where

$$K_{\mu}(x,y) = \sum_m m(2^{-\mu} a_m) h_m(x) h_m(y).$$
Let π be the Schrödinger representation of \mathbb{H}_d defined by
\begin{equation}
\pi((z,t))f(u) = e^{i(x \cdot u + \frac{1}{2} x \cdot y + t)}f(y + u).
\end{equation}
Then $\pi_{Y_j} = \frac{\partial}{\partial x_j}$, $\pi_{X_j} = ix_j$, and consequently $\pi_L = -\Delta + |x|^2$ is the Hermite operator on \mathbb{R}^d. For $m \in \mathcal{S}(\mathbb{R})$, let $M(x,y,t)$ be the convolution kernel for the operator $m(L)$ on \mathbb{H}_d (cf. Theorem 2.3). Then
\begin{equation}
m(H)f = \pi M f = \int_{\mathbb{H}_d} M(x,y,t)\pi(x,y,t)fdxdydt.
\end{equation}
Applying (5.4) and Theorem 2.3, we get
\begin{equation}
K_{\mu}(x,y) = \int_{\mathbb{R}^d} \int_{-\infty}^{\infty} 2^{d\mu/2}M(w,2^{\mu/2}(y-x),t)e^{i\frac{1}{2}2^{\mu/2}w \cdot (x+y)+2^{-\mu}t}dtdw.
\end{equation}

Lemma 5.6. For every $b > 0$ there is a constant C_b such that
\begin{equation}
|K_{\mu}(x,y)| \leq C_b 2^{d\mu/2}(1 + 2^{\mu/2}|x-y|)^{-b}.
\end{equation}

Proof. The estimate (5.7) is a consequence of (5.5) and Theorem 2.3.

In order to obtain (5.8) we use the fact that $\frac{\partial}{\partial x_j}K_{\mu}(x,y)$ is the kernel which corresponds to $\pi_{Y_j}\pi_{M_{2-\mu}}$. As $\pi_{Y_j}\pi_{M_{2-\mu}} = -\pi_{Y_j}\pi_{M_{2-\mu}}$, we have
\begin{equation}
\frac{\partial}{\partial x_j}K_{\mu}(x,y) = -\int_{\mathbb{R}^d} \int_{-\infty}^{\infty} 2^{\mu/2}(\tilde{Y}_j M)_{2-\mu}(w,y-x,t)e^{i\frac{1}{2}w \cdot (x+y)+t}dtdw.
\end{equation}
This gives
\begin{equation}
|\frac{\partial}{\partial x_j}K_{\mu}(x,y)| \leq 2^{\mu/2}2^{d\mu/2} \int_{\mathbb{R}^d} \int_{-\infty}^{\infty} |\tilde{Y}_j M(w,2^{\mu/2}(y-x),t)|dtdw.
\end{equation}
The function $\tilde{Y}_j M$ is in the Schwartz class on \mathbb{H}_d, therefore (5.8) follows from (5.9).

Using Lemma 5.6, Theorem B can be proved in the same way as Theorem 1.1 in [E1].

Remark. Standard arguments show that the norms of the Triebel-Lizorkin spaces for Laguerre and Hermite expansions for parameters $\alpha = 0$, $1 < p < \infty$, and $q = 2$ are equivalent to the L^p norms.

Acknowledgements

The author is grateful for conversations on the subject of this paper with J. Epperson, M. Taibleson, and G. Weiss.

References

Department of Mathematics, Washington University, St. Louis, Missouri 63130

Current address: Instytut Matematyczny, Uniwersytet Wrocławski, Plac Grunwaldzki 2/4, 50-384 Wrocław, Poland

E-mail address: jdziuban@math.uni.wroc.pl