## The fully invariant subgroups of local Warfield groups

HTML articles powered by AMS MathViewer

- by Steve T. Files PDF
- Proc. Amer. Math. Soc.
**125**(1997), 3515-3518 Request permission

## Abstract:

We prove that every fully invariant subgroup of a $p$-local Warfield abelian group is the direct sum of a Warfield group and an $S$-group. This solves a problem posed some time ago by R. B. Warfield, and finalizes recent work of M. Lane concerning the fully invariant subgroups of balanced projective groups.## References

- S. Files,
*On transitive mixed abelian groups*, pp. 243–251 in*Abelian Groups and Modules: Proceedings of the 1995 Colorado Springs Conference*, Marcel Dekker, New York, 1996. - László Fuchs,
*Infinite abelian groups. Vol. II*, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR**0349869** - László Fuchs,
*Abelian $p$-groups and mixed groups*, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 70, Presses de l’Université de Montréal, Montreal, Que., 1980. MR**569744** - Paul Hill and Charles Megibben,
*Axiom $3$ modules*, Trans. Amer. Math. Soc.**295**(1986), no. 2, 715–734. MR**833705**, DOI 10.1090/S0002-9947-1986-0833705-6 - Roger Hunter, Fred Richman, and Elbert Walker,
*Warfield modules*, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Lecture Notes in Math., Vol. 616, Springer, Berlin, 1977, pp. 87–123. MR**0506216** - Roger Hunter, Fred Richman, and Elbert Walker,
*Existence theorems for Warfield groups*, Trans. Amer. Math. Soc.**235**(1978), 345–362. MR**473044**, DOI 10.1090/S0002-9947-1978-0473044-4 - Irving Kaplansky,
*Infinite abelian groups*, Revised edition, University of Michigan Press, Ann Arbor, Mich., 1969. MR**0233887** - Mark Lane,
*Isotype submodules of $p$-local balanced projective groups*, Trans. Amer. Math. Soc.**301**(1987), no. 1, 313–325. MR**879576**, DOI 10.1090/S0002-9947-1987-0879576-4 - Mark Lane,
*Fully invariant submodules of $p$-local balanced projective groups*, Rocky Mountain J. Math.**18**(1988), no. 4, 833–841. MR**1002179**, DOI 10.1216/RMJ-1988-18-4-833 - Robert O. Stanton,
*Relative $S$-invariants*, Proc. Amer. Math. Soc.**65**(1977), no. 2, 221–224. MR**447206**, DOI 10.1090/S0002-9939-1977-0447206-0 - R. B. Warfield Jr.,
*Classification theorems for $p$-groups and modules over a discrete valuation ring*, Bull. Amer. Math. Soc.**78**(1972), 88–92. MR**291284**, DOI 10.1090/S0002-9904-1972-12870-2 - R. B. Warfield Jr.,
*Classification theory of abelian groups. I. Balanced projectives*, Trans. Amer. Math. Soc.**222**(1976), 33–63. MR**422455**, DOI 10.1090/S0002-9947-1976-0422455-X - Robert B. Warfield Jr.,
*The structure of mixed abelian groups*, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Lecture Notes in Math., Vol. 616, Springer, Berlin, 1977, pp. 1–38. MR**0507073**

## Additional Information

**Steve T. Files**- Email: sfiles@wesleyan.edu
- Received by editor(s): June 30, 1995
- Received by editor(s) in revised form: July 18, 1996
- Additional Notes: The author was supported by the Graduiertenkolleg of the University of Essen
- Communicated by: Andreas R. Blass
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 3515-3518 - MSC (1991): Primary 20K27, 20K21; Secondary 20K30
- DOI: https://doi.org/10.1090/S0002-9939-97-03999-3
- MathSciNet review: 1416084