Statistical limit superior and limit inferior
HTML articles powered by AMS MathViewer
- by J. A. Fridy and C. Orhan
- Proc. Amer. Math. Soc. 125 (1997), 3625-3631
- DOI: https://doi.org/10.1090/S0002-9939-97-04000-8
- PDF | Request permission
Abstract:
Following the concept of statistical convergence and statistical cluster points of a sequence $x$, we give a definition of statistical limit superior and inferior which yields natural relationships among these ideas: e.g., $x$ is statistically convergent if and only if $\textrm {st}\text {-}\textrm {liminf} x= \textrm {st}\text {-}\textrm {limsup} x$. The statistical core of $x$ is also introduced, for which an analogue of Knopp’s Core Theorem is proved. Also, it is proved that a bounded sequence that is $C_{1}$-summable to its statistical limit superior is statistically convergent.References
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- J. S. Connor, The statistical and strong $p$-Cesàro convergence of sequences, Analysis 8 (1988), no. 1-2, 47–63. MR 954458, DOI 10.1524/anly.1988.8.12.47
- Jeff Connor and Mary Anne Swardson, Strong integral summability and the Stone-Čech compactification of the half-line, Pacific J. Math. 157 (1993), no. 2, 201–224. MR 1197054
- Jeff Connor and Mary Anne Swardson, Measures and ideals of $C^\ast (X)$, Papers on general topology and applications (Madison, WI, 1991) Ann. New York Acad. Sci., vol. 704, New York Acad. Sci., New York, 1993, pp. 80–91. MR 1277845, DOI 10.1111/j.1749-6632.1993.tb52511.x
- Jeff Connor and Jeannette Kline, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197 (1996), no. 2, 392–399. MR 1372186, DOI 10.1006/jmaa.1996.0027
- P. Erdős and G. Tenenbaum, Sur les densités de certaines suites d’entiers, Proc. London Math. Soc. (3) 59 (1989), no. 3, 417–438 (French). MR 1014865, DOI 10.1112/plms/s3-59.3.417
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301–313. MR 816582, DOI 10.1524/anly.1985.5.4.301
- J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187–1192. MR 1181163, DOI 10.1090/S0002-9939-1993-1181163-6
- J. A. Fridy and C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl. 173 (1993), no. 2, 497–504. MR 1209334, DOI 10.1006/jmaa.1993.1082
- J. A. Fridy and H. I. Miller, A matrix characterization of statistical convergence, Analysis 11 (1991), no. 1, 59–66. MR 1113068, DOI 10.1524/anly.1991.11.1.59
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- K. Knopp, Zur Theorie der Limitierungsverfahren(Erste Mitteilung), Math. Zeit. 31(1930), 115-127.
- I. J. Maddox, Steinhaus type theorems for summability matrices, Proc. Amer. Math. Soc. 45 (1974), 209–213. MR 364938, DOI 10.1090/S0002-9939-1974-0364938-0
- I. J. Maddox, Some analogues of Knopp’s core theorem, Internat. J. Math. Math. Sci. 2 (1979), no. 4, 605–614. MR 549529, DOI 10.1155/S0161171279000454
- I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 1, 141–145. MR 938459, DOI 10.1017/S0305004100065312
- Harry I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1811–1819. MR 1260176, DOI 10.1090/S0002-9947-1995-1260176-6
- Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An introduction to the theory of numbers, 5th ed., John Wiley & Sons, Inc., New York, 1991. MR 1083765
- A. Zygmund, Trigonometric series. Vol. I, II, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Reprinting of the 1968 version of the second edition with Volumes I and II bound together. MR 0617944
Bibliographic Information
- J. A. Fridy
- Affiliation: Department of Mathematics, Faculty of Science, Ankara University, Ankara, 06100, Turkey
- Email: fridy@mcs.kent.edu
- C. Orhan
- Affiliation: Department of Mathematics, Faculty of Science, Ankara University, Ankara, 06100, Turkey
- Email: orhan@science.ankara.edu.tr
- Received by editor(s): April 20, 1995
- Received by editor(s) in revised form: July 15, 1996
- Communicated by: J. Marshall Ash
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3625-3631
- MSC (1991): Primary 40A05; Secondary 26A03, 11B05
- DOI: https://doi.org/10.1090/S0002-9939-97-04000-8
- MathSciNet review: 1416085