Compact Hermitian surfaces of constant antiholomorphic sectional curvatures
HTML articles powered by AMS MathViewer
- by Vestislav Apostolov, Georgi Ganchev and Stefan Ivanov
- Proc. Amer. Math. Soc. 125 (1997), 3705-3714
- DOI: https://doi.org/10.1090/S0002-9939-97-04043-4
- PDF | Request permission
Abstract:
Compact Hermitian surfaces of constant antiholomorphic sectional curvatures with respect to the Riemannian curvature tensor and with respect to the Hermitian curvature tensor are considered. It is proved: a compact Hermitian surface of constant antiholomorphic Riemannian sectional curvatures is a self-dual Kaehler surface; a compact Hermitian surface of constant antiholomorphic Hermitian sectional curvatures is either a Kaehler surface of constant (non-zero) holomorphic sectional curvatures or a conformally flat Hermitian surface.References
- Vestislav Apostolov, Johann Davidov, and Oleg Muškarov, Compact self-dual Hermitian surfaces, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3051–3063. MR 1348147, DOI 10.1090/S0002-9947-96-01585-1
- Andrew Balas, Compact Hermitian manifolds of constant holomorphic sectional curvature, Math. Z. 189 (1985), no. 2, 193–210. MR 779217, DOI 10.1007/BF01175044
- Jozef Tvarožek, Amalgamations of homogeneous Riemannian spaces, Časopis Pěst. Mat. 109 (1984), no. 4, 355–371 (English, with Russian summary). MR 774278
- Jean-Pierre Bourguignon, Les variétés de dimension $4$ à signature non nulle dont la courbure est harmonique sont d’Einstein, Invent. Math. 63 (1981), no. 2, 263–286 (French). MR 610539, DOI 10.1007/BF01393878
- Charles P. Boyer, Conformal duality and compact complex surfaces, Math. Ann. 274 (1986), no. 3, 517–526. MR 842629, DOI 10.1007/BF01457232
- Charles P. Boyer, Self-dual and anti-self-dual Hermitian metrics on compact complex surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 105–114. MR 954411, DOI 10.1090/conm/071/954411
- Andrzej Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), no. 3, 405–433. MR 707181
- M. Falcitelli and A. Farinola, Locally conformal Kähler manifolds with pointwise constant antiholomorphic sectional curvature, Riv. Mat. Univ. Parma (4) 17 (1991), 295–314 (1992) (English, with Italian summary). MR 1174958
- Georgi T. Ganchev, On Bochner curvature tensors in almost Hermitian manifolds, Pliska Stud. Math. Bulgar. 9 (1987), 33–43. MR 892678
- Paul Gauduchon, Fibrés hermitiens à endomorphisme de Ricci non négatif, Bull. Soc. Math. France 105 (1977), no. 2, 113–140 (French). MR 486672
- Paul Gauduchon, Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 5, A387–A390 (French, with English summary). MR 470920
- Paul Gauduchon, La $1$-forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 (1984), no. 4, 495–518 (French). MR 742896, DOI 10.1007/BF01455968
- Nigel Hitchin, Compact four-dimensional Einstein manifolds, J. Differential Geometry 9 (1974), 435–441. MR 350657
- N. J. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981), no. 1, 133–150. MR 623721, DOI 10.1112/plms/s3-43.1.133
- Mitsuhiro Itoh, Self-duality of Kähler surfaces, Compositio Math. 51 (1984), no. 2, 265–273. MR 739738
- Takashi Koda, Self-dual and anti-self-dual Hermitian surfaces, Kodai Math. J. 10 (1987), no. 3, 335–342. MR 929993, DOI 10.2996/kmj/1138037464
- Takuji Sato and Kouei Sekigawa, Hermitian surfaces of constant holomorphic sectional curvature, Math. Z. 205 (1990), no. 4, 659–668. MR 1082882, DOI 10.1007/BF02571270
- Takuji Sato and Kouei Sekigawa, Hermitian surfaces of constant holomorphic sectional curvature. II, Tamkang J. Math. 23 (1992), no. 2, 137–143. MR 1168660
- I. M. Singer and J. A. Thorpe, The curvature of $4$-dimensional Einstein spaces, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 355–365. MR 0256303
- Franco Tricerri and Lieven Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), no. 2, 365–397. MR 626479, DOI 10.1090/S0002-9947-1981-0626479-0
- Izu Vaisman, Some curvature properties of complex surfaces, Ann. Mat. Pura Appl. (4) 132 (1982), 1–18 (1983). MR 696036, DOI 10.1007/BF01760974
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
Bibliographic Information
- Georgi Ganchev
- Affiliation: Bulgarian Academy of Science, Institute of Mathematics Acad., G. Bonchev Str., blok 8, 1113 Sofia Bulgaria
- Email: ganchev@math.acad.bg
- Stefan Ivanov
- Affiliation: University of Sofia, Faculty of Mathematics and Informatics, Department of Geometry, bul. James Bouchier 5, 1164 Sofia, Bulgaria
- Email: ivanovsp@fmi.uni-sofia.bg
- Received by editor(s): March 22, 1995
- Received by editor(s) in revised form: July 28, 1996
- Additional Notes: The first author was supported by Contract MM 423/1994 with the Ministry of Science and Education of Bulgaria; the second author was supported by Contract MM 413/1994 with the Ministry of Science and Education of Bulgaria; and the third author was supported by Contract MM 413/1994 with the Ministry of Science and Education of Bulgaria and by Contract 219/1994 with the University of Sofia “St. Kl. Ohridski"
- Communicated by: Christopher Croke
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3705-3714
- MSC (1991): Primary 53C15, 53C55, 53B35
- DOI: https://doi.org/10.1090/S0002-9939-97-04043-4
- MathSciNet review: 1415572