ON A THEOREM OF OSSA

DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

(Communicated by Thomas Goodwillie)

Abstract. If V is an elementary abelian 2-group, Ossa proved that the connective K-theory of BV splits into copies of \(\mathbb{Z}/2 \) and of the connective K-theory of the infinite real projective space. We give a brief proof of Ossa’s theorem.

Introduction

We have been asked whether our work, [1] and [2] on the Brown-Peterson homology of BV, V an elementary p-group, gives a nice structure of the connective K-theory of BV. The answer is that the approach of [1] leads to the elegant structure theorem of Ossa [4]. Although the approach is motivated by our [1] and [2], the proof is independent of that work. In this reproof of an established theorem we shall limit our exposition to the \(p = 2 \) case. For us, the notation makes this the easiest case, but for Ossa, it was the more difficult one. With obvious modifications, the odd-primary version of our argument follows the same outline. We thank Don Davis for the Lindelevicius reference.

Notation. Let \(bu \) be the connective K-theory spectrum and let P denote \(B\mathbb{Z}/2 \) (also known as infinite real projective space). Let \(H\mathbb{Z}/2 \) be the \(\mathbb{Z}/2 \) Eilenberg-MacLane spectrum.

Theorem 1 (Ossa). With the above notation, there is a homotopy equivalence of spectra

\[
bu \wedge P \wedge P \simeq \bigvee_{0 < i,j} \Sigma^{2i+2j-2} H\mathbb{Z}/2 \vee [\Sigma^2 bu \wedge P].
\]

Eric Ossa has kindly pointed out that our proof gives this as a homotopy equivalence of BP-module spectra.

Note that \(H\mathbb{Z}/2 \wedge P \simeq \bigvee_{0 < i} \Sigma^i H\mathbb{Z}/2 \). (The proof of this is like that of Lemma 3.) Thus the theorem can be used inductively to split \(bu \wedge P \wedge \cdots \wedge P \wedge \cdots \) into suspended copies of \(H\mathbb{Z}/2 \) and one suspended copy of \(bu \wedge P \). Since \(bu \wedge BV = bu \wedge (P \times \cdots \times P) \) is a wedge sum of \(bu \wedge P \wedge \cdots \wedge P \)'s, we get the following corollary.

Corollary 2. Let V be an elementary abelian p-group. Then \(bu_\ast (BV) \) is isomorphic to a sum of suspended copies of \(\mathbb{Z}/2 \) and of \(bu_\ast (P) \). \(\square \)

Received by the editors January 11, 1996 and, in revised form, July 19, 1996.

1991 Mathematics Subject Classification. Primary 55P10, 55N20; Secondary 55N15, 55S10.

Key words and phrases. K-theory, real projective space, elementary abelian group.

\(\copyright 1997 \) American Mathematical Society

3753
Lemma 3. There is a homotopy equivalence $bu \wedge CP^\infty \simeq \bigvee_{0<n} bu \wedge S^{2n}$. In particular, there is a projection $\rho : bu \wedge CP^\infty \longrightarrow bu \wedge S^2$.

Proof. Choose $f_n : S^{2n} \longrightarrow bu \wedge CP^\infty$ representing the bu_* generators of $bu_*(CP^\infty)$. Define $f : \bigvee_{0<n} S^{2n} \longrightarrow bu \wedge CP^\infty$ by $f|S^{2n} = f_n$. We have the composition

$$F : \bigvee_{0<n} bu \wedge S^{2n} \xrightarrow{bu \wedge f} bu \wedge bu \wedge CP^\infty \xrightarrow{\mu \wedge CP^\infty} bu \wedge CP^\infty$$

where μ is the pairing of the bu spectrum. F induces an isomorphism in homotopy and thus is an equivalence. \hfill \Box

The proof of Theorem 1

Let $\pi : P \longrightarrow CP^\infty$ represent the nonzero second dimensional integral homology class of P. Define g_1 to be the composition

$$g_1 : bu \wedge P \wedge P \xrightarrow{bu \wedge \pi \wedge P} bu \wedge CP^\infty \wedge P \xrightarrow{\rho \wedge P} bu \wedge S^2 \wedge P.$$

Let $H^*(P \wedge P; \mathbb{Z}/2) \cong \mathbb{Z}/2[s,t]/(st)$ be the mod 2 cohomology of $P \wedge P$. For $b = s^{2i-1} \wedge t^{j-1} \in H^{2i+2j-2}(P \wedge P; \mathbb{Z}/2)$, let $g_0 : P \wedge P \longrightarrow \Sigma^{dim(b)} HZ/2$ represent b. Now construct the map g_0 by the following composition:

$$g_0 : bu \wedge P \wedge P \xrightarrow{bu \wedge \nu \wedge g_0} bu \wedge \bigvee_{0<i,j} \Sigma^{2i+2j-2}HZ/2 \xrightarrow{\nu \wedge \pi} \bigvee_{0<i,j} \Sigma^{2i+2j-2}HZ/2$$

where $\nu : bu \wedge HZ/2 \longrightarrow HZ/2$ is the standard pairing making mod 2 homology a module theory over connective K-theory. The map

$$g = g_0 \vee g_1 : bu \wedge P \wedge P \longrightarrow \bigvee_{0<i,j} \Sigma^{2i+2j-2}HZ/2 \vee [\Sigma^2 bu \wedge P]$$

is our candidate for the equivalence.

Let A be the mod 2 Steenrod algebra and $E = E(Q_0, Q_1)$ $(Q_0 = S^1$ and $Q_1 = S^2$). Then $H^*(bu; \mathbb{Z}/2) \cong A/A(Q_0, Q_1) \cong A \otimes_{E} \mathbb{Z}/2$. In $H^*(P \wedge P; \mathbb{Z}/2)$, the classes $\{s^2 i^j : i > 0\}$ give a basis for an E-module D^* isomorphic to $H^*(S^2 \wedge P; \mathbb{Z}/2)$. Let $M \cong H^*(P \wedge P; \mathbb{Z}/2)/D^*$. It is isomorphic to a free E-module with basis $\{s^{2i-1} \wedge t^j : i, j > 0\}$. Clearly in dimension 2,

$$(bu \wedge \pi)^* \circ \rho^* : H^2(bu \wedge S^2; \mathbb{Z}/2) \longrightarrow H^2(bu \wedge P; \mathbb{Z}/2)$$

is an isomorphism. Thus g_1^* takes $H^*(bu \wedge S^2 \wedge P; \mathbb{Z}/2)$ isomorphically onto $A/A(Q_0, Q_1) \otimes D^*$. By the construction of the composition g_0, we see that g_0^* takes $H^*(\bigvee_{0<i,j} \Sigma^{2i+2j-2}HZ/2; \mathbb{Z}/2)$ onto the A-module generated by $\{1 \wedge s^{2i-1} \wedge t^j : i, j > 0\}$. The composition of the projection of $H^*(bu \wedge P \wedge P) \longrightarrow H^*(bu \wedge P \wedge P)/(A/A(Q_0, Q_1) \otimes D^*) \cong (A \otimes_{E} \mathbb{Z}/2) \otimes M$ with g_0^* gives an isomorphism. Although this is obvious it does require a proof. A generalization from the literature is Proposition 1.7 of Arunas Liulevicius [3]. Let his N be $Z/2$, his A our A, his B our E and his M our M. He shows:

$$M \otimes (A \otimes_{E} \mathbb{Z}/2) \cong A \otimes_{E} M.$$

The A action on the left is by the diagonal and this is isomorphic to $(A \otimes_{E} \mathbb{Z}/2) \otimes M$. The A action on the right-hand side is just on A and since M is free this is A free on the appropriate generators. Thus g induces an isomorphism in mod 2 cohomology and thus is an equivalence. \hfill \Box
ON A THEOREM OF OSSA

REFERENCES

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

E-mail address: johnson@ms.uky.edu

Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218

E-mail address: wsw@math.jhu.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use