ON A THEOREM OF OSSA

DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

(Communicated by Thomas Goodwillie)

ABSTRACT. If V is an elementary abelian 2-group, Ossa proved that the connective K-theory of BV splits into copies of $\mathbf{Z}/2$ and of the connective K-theory of the infinite real projective space. We give a brief proof of Ossa's theorem.

Introduction

We have been asked whether our work, [1] and [2] on the Brown-Peterson homology of BV, V an elementary p-group, gives a nice structure of the connective K-theory of BV. The answer is that the approach of [1] leads to the elegant structure theorem of Ossa [4]. Although the approach is motivated by our [1] and [2], the proof is independent of that work. In this reproof of an established theorem we shall limit our exposition to the p=2 case. For us, the notation makes this the easiest case, but for Ossa, it was the more difficult one. With obvious modifications, the odd-primary version of our argument follows the same outline. We thank Don Davis for the Liulevicius reference.

Notation. Let bu be the connective K-theory spectrum and let P denote $B\mathbf{Z}/2$ (also known as infinite real projective space). Let $H\mathbf{Z}/2$ be the $\mathbf{Z}/2$ Eilenberg-Mac Lane spectrum.

Theorem 1 (Ossa). With the above notation, there is a homotopy equivalence of spectra

$$bu \wedge P \wedge P \simeq [\bigvee_{0 < i,j} \Sigma^{2i+2j-2} H \mathbf{Z}/2] \vee [\Sigma^2 bu \wedge P].$$

Eric Ossa has kindly pointed out that our proof gives this as a homotopy equivalence of BP-module spectra.

Note that $H\mathbf{Z}/2 \wedge P \simeq \bigvee_{0 < i} \Sigma^i H\mathbf{Z}/2$. (The proof of this is like that of Lemma 3.) Thus the theorem can be used inductively to split $bu \wedge P \wedge \cdots \wedge P$ into suspended copies of $H\mathbf{Z}/2$ and one suspended copy of $bu \wedge P$. Since $bu \wedge BV = bu \wedge (P \times \cdots \times P)$ is a wedge sum of $bu \wedge P \wedge \cdots \wedge P$'s, we get the following corollary.

Corollary 2. Let V be an elementary abelian p-group. Then $bu_*(BV)$ is isomorphic to a sum of suspended copies of $\mathbb{Z}/2$ and of $bu_*(P)$.

Received by the editors January 11, 1996 and, in revised form, July 19, 1996. 1991 Mathematics Subject Classification. Primary 55P10, 55N20; Secondary 55N15, 55S10. Key words and phrases. K-theory, real projective space, elementary abelian group.

Lemma 3. There is a homotopy equivalence $bu \wedge \mathbb{C}P^{\infty} \simeq \bigvee_{0 < n} bu \wedge S^{2n}$. In particular, there is a projection $\rho : bu \wedge \mathbb{C}P^{\infty} \longrightarrow bu \wedge S^2$.

Proof. Choose $f_n: S^{2n} \longrightarrow bu \wedge \mathbb{C}P^{\infty}$ representing the bu_* generators of $bu_*(\mathbb{C}P^{\infty})$. Define $f: \bigvee_{0 < n} S^{2n} \longrightarrow bu \wedge \mathbb{C}P^{\infty}$ by $f|S^{2n} = f_n$. We have the composition

$$F: \bigvee_{0 < n} bu \wedge S^{2n} \xrightarrow{bu \wedge f} bu \wedge bu \wedge \mathbf{C} P^{\infty} \xrightarrow{\mu \wedge \mathbf{C} P^{\infty}} bu \wedge \mathbf{C} P^{\infty}$$

where μ is the pairing of the bu spectrum. F induces an isomorphism in homotopy and thus is an equivalence.

The proof of Theorem 1

Let $\pi: P \longrightarrow \mathbb{C}P^{\infty}$ represent the nonzero second dimensional integral homology class of P. Define g_1 to be the composition

$$g_1: bu \wedge P \wedge P \xrightarrow{bu \wedge \pi \wedge P} bu \wedge \mathbb{C}P^{\infty} \wedge P \xrightarrow{\rho \wedge P} bu \wedge S^2 \wedge P.$$

Let $H^*(P \wedge P; \mathbf{Z}/2) \cong \mathbf{Z}/2[s,t](st)$ be the mod 2 cohomology of $P \wedge P$. For $b = s^{2i-1} \wedge t^{2j-1} \in H^{2i+2j-2}(P \wedge P; \mathbf{Z}/2)$, let $g_b : P \wedge P \longrightarrow \Sigma^{dim(b)}H\mathbf{Z}/2$ represent b. Now construct the map g_0 by the following composition:

$$g_0: bu \wedge P \wedge P \overset{bu \wedge \vee_b g_b}{\longrightarrow} bu \wedge [\bigvee_{0 < i,j} \Sigma^{2i+2j-2} H\mathbf{Z}/2] \overset{\vee_b \nu}{\longrightarrow} [\bigvee_{0 < i,j} \Sigma^{2i+2j-2} H\mathbf{Z}/2]$$

where $\nu : bu \wedge H\mathbf{Z}/2 \longrightarrow H\mathbf{Z}/2$ is the standard pairing making mod 2 homology a module theory over connective K-theory. The map

$$g = g_0 \vee g_1 : bu \wedge P \wedge P \longrightarrow [\bigvee_{0 < i, j} \Sigma^{2i + 2j - 2} H\mathbf{Z}/2] \vee [\Sigma^2 bu \wedge P]$$

is our candidate for the equivalence.

Let A be the mod 2 Steenrod algebra and $E = E[Q_0, Q_1]$ ($Q_0 = Sq^1$ and $Q_1 = Sq^3 + Sq^2Sq^1$). Then $H^*(bu; \mathbf{Z}/2) \cong A/A(Q_0, Q_1) \cong A \otimes_E \mathbf{Z}/2$. In $H^*(P \wedge P; \mathbf{Z}/2)$, the classes $\{s^2 \wedge t^i : i > 0\}$ give a basis for an E-module D^* isomorphic to $H^*(S^2 \wedge P; \mathbf{Z}/2)$. Let $M \cong H^*(P \wedge P; \mathbf{Z}/2)/D^*$. It is isomorphic to a free E-module with basis $\{s^{2i-1} \wedge t^{2j-1} : i, j > 0\}$. Clearly in dimension 2,

$$(bu \wedge \pi)^* \circ \rho^* : H^2(bu \wedge S^2; \mathbf{Z}/2) \longrightarrow H^2(bu \wedge P; \mathbf{Z}/2)$$

is an isomorphism. Thus g_1^* takes $H^*(bu \wedge S^2 \wedge P; \mathbf{Z}/2)$ isomorphically onto $A/A(Q_0,Q_1)\otimes D^*$. By the construction of the composition g_0 , we see that g_0^* takes $H^*(\bigvee_{0< i,j} \Sigma^{2i+2j-2} H\mathbf{Z}/2; \mathbf{Z}/2)$ onto the A-module generated by $\{1 \wedge s^{2i-1} \wedge t^{2j-1}: i,j>0\}$. The composition of the projection of

$$H^*(bu \wedge P \wedge P) \longrightarrow H^*(bu \wedge P \wedge P)/(A/A(Q_0, Q_1) \otimes D^*) \cong (A \otimes_E \mathbf{Z}/2)) \otimes M$$

with g_0^* gives an isomorphism. Although this is obvious it does require a proof. A generalization from the literature is Proposition 1.7 of Arunas Liulevicius [3]. Let his N be $\mathbb{Z}/2$, his A our A, his B our E and his M our E. He shows:

$$M \otimes (A \otimes_E \mathbf{Z}/2) \cong A \otimes_E M$$
.

The A action on the left is by the diagonal and this is isomorphic to $(A \otimes_E \mathbf{Z}/2) \otimes M$. The A action on the right-hand side is just on A and since M is E free this is A free on the appropriate generators. Thus g induces an isomorphism in mod 2 cohomology and thus is an equivalence.

References

- [1] D. C. Johnson and W. S. Wilson, The Brown-Peterson homology of elementary p-groups, $Amer.\ J.\ Math.\ 107\ (1985),\ 427-454.\ MR\ 86j:55008$
- [2] D. C. Johnson, W. S. Wilson, and D. Y. Yan, Brown-Peterson homology of elementary p-groups II, Topology and its Applications 59 (1994) 117-136. MR 95j:55008
- [3] A. Liulevicius, The cohomology of Massey-Peterson algebras, Math. Zeitschr. 105 (1968) 226-256. MR 38:1680
- [4] E. Ossa, Connective K-theory of elementary abelian groups, Transformation Groups, Osaka 1987, K. Kawakubo (ed.), Springer Lecture Notes in Mathematics 1375 (1989) 269-275. MR 90h:55009

Department of Mathematics, University of Kentucky, Lexington, Kentucky $40506\ E\text{-}mail\ address:}$ johnson@ms.uky.edu

Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218 E-mail address: wsw@math.jhu.edu