Open mappings increasing order
HTML articles powered by AMS MathViewer
- by Janusz J. Charatonik and Włodzimierz J. Charatonik
- Proc. Amer. Math. Soc. 125 (1997), 3725-3733
- DOI: https://doi.org/10.1090/S0002-9939-97-04096-3
- PDF | Request permission
Abstract:
It is shown that an analog of Whyburn’s theorem saying that open mappings do not increase order of a point of locally compact metric spaces is not true if the Menger-Urysohn order is replaced by order in the classical sense. On the other hand, this analog is true, even for a wider class of confluent mappings, under an additional condition that the mapping is light and the domain continuum is hereditarily unicoherent.References
- J. J. Charatonik, On ramification points in the classical sense, Fund. Math. 51 (1962/63), 229–252. MR 143183, DOI 10.4064/fm-51-3-229-252
- J. J. Charatonik, W. J. Charatonik, and S. Miklos, Confluent mappings of fans, Dissertationes Math. (Rozprawy Mat.) 301 (1990), 86. MR 1055706
- H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), 241–249. MR 220249, DOI 10.4064/fm-60-3-241-249
- C. A. Eberhart, J. B. Fugate, and G. R. Gordh Jr., Branchpoint covering theorems for confluent and weakly confluent maps, Proc. Amer. Math. Soc. 55 (1976), no. 2, 409–415. MR 410703, DOI 10.1090/S0002-9939-1976-0410703-7
- Z. Janiszewski, Sur les continus irréductibles entre deux points, Journal de l’Ecole Polytechnique (2) 16 (1912), 79–170.
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1960/61), 301–319. MR 133806, DOI 10.4064/fm-49-3-301-319
- Jacek Nikiel, A characterization of dendroids with uncountably many end-points in the classical sense, Houston J. Math. 9 (1983), no. 3, 421–432. MR 719101
- Jacek Nikiel, On dendroids and their ramification points in the classical sense, Fund. Math. 123 (1984), no. 1, 39–46. MR 755617, DOI 10.4064/fm-123-1-39-46
- Jacek Nikiel, On dendroids and their end-points and ramification points in the classical sense, Fund. Math. 124 (1984), no. 2, 99–108. MR 774501, DOI 10.4064/fm-124-2-99-108
- Gordon Thomas Whyburn, Analytic topology, American Mathematical Society Colloquium Publications, Vol. XXVIII, American Mathematical Society, Providence, R.I., 1963. MR 0182943
- W. H. Young and Grace Chisholm Young, The theory of sets of points, Chelsea Publishing Co., Bronx, N.Y., 1972. Second edition of the 1906 original with a new preface and a further appendix by R. C. H. Tanner and I. Grattan-Guinness. MR 0476519
Bibliographic Information
- Janusz J. Charatonik
- Affiliation: Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
- Address at time of publication: Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México, D. F., México
- Email: jjc@math.uni.wroc.pl, jjc@gauss.matem.unam.mx
- Włodzimierz J. Charatonik
- Affiliation: Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
- Address at time of publication: Departamento de Matemáticas, Facultad de Ciencias, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México, D. F., México
- Email: wjcharat@math.uni.wroc.pl, wjcharat@lya.fciencias.unam.mx
- Received by editor(s): May 1, 1996
- Communicated by: Franklin D. Tall
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3725-3733
- MSC (1991): Primary 54C10, 54F15; Secondary 54F50
- DOI: https://doi.org/10.1090/S0002-9939-97-04096-3
- MathSciNet review: 1422853