Domains of finite type and Hölder continuity of the Perron-Bremermann function
HTML articles powered by AMS MathViewer
- by Dan Coman
- Proc. Amer. Math. Soc. 125 (1997), 3569-3574
- DOI: https://doi.org/10.1090/S0002-9939-97-04100-2
- PDF | Request permission
Abstract:
Let $\Omega$ be a smoothly bounded domain in ${\mathbb C}^n$ such that $0\in \partial \Omega$. We give a bound for the type of $\partial \Omega$ at 0 in terms of the Hölder exponent of its Perron-Bremermann function with simple boundary data. We then use this to show that a smoothly bounded domain in ${\mathbb C}^2$ is pseudoconvex of finite type if and only if its Perron-Bremermann function corresponding to Hölder continuous boundary data is Hölder continuous.References
- Eric Bedford, Levi flat hypersurfaces in $\textbf {C}^{2}$ with prescribed boundary: stability, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 9 (1982), no. 4, 529–570. MR 693779
- Eric Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), no. 1, 1–44. MR 445006, DOI 10.1007/BF01418826
- John P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615–637. MR 657241, DOI 10.2307/2007015
- Klas Diederich and John E. Fornæss, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 110 (1979), no. 3, 575–592. MR 554386, DOI 10.2307/1971240
- John Erik Fornæss and Nessim Sibony, Construction of P.S.H. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), no. 3, 633–655. MR 1016439, DOI 10.1215/S0012-7094-89-05830-4
- John Erik Fornæss and Berit Stensønes, Lectures on counterexamples in several complex variables, Mathematical Notes, vol. 33, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1987. MR 895821
- Bernard Gaveau, Méthodes de contrôle optimal en analyse complexe. I. Résolution d’équations de Monge Ampère, J. Functional Analysis 25 (1977), no. 4, 391–411 (French). MR 0457783, DOI 10.1016/0022-1236(77)90046-5
- David Gilbarg and Lars Hörmander, Intermediate Schauder estimates, Arch. Rational Mech. Anal. 74 (1980), no. 4, 297–318. MR 588031, DOI 10.1007/BF00249677
- Erich Rothe, Topological proofs of uniqueness theorems in the theory of differential and integral equations, Bull. Amer. Math. Soc. 45 (1939), 606–613. MR 93, DOI 10.1090/S0002-9904-1939-07048-1
- Nessim Sibony, Some aspects of weakly pseudoconvex domains, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 199–231. MR 1128526, DOI 10.1090/pspum/052.1/1128526
- J. B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968/1969), 143–148. MR 0227465, DOI 10.1512/iumj.1969.18.18015
Bibliographic Information
- Dan Coman
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
- Address at time of publication: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
- MR Author ID: 325057
- Email: dan.coman@math.lsa.umich.edu
- Received by editor(s): July 1, 1996
- Communicated by: Eric Bedford
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3569-3574
- MSC (1991): Primary 32F25, 32F05; Secondary 32F15
- DOI: https://doi.org/10.1090/S0002-9939-97-04100-2
- MathSciNet review: 1422857