Counting elliptic plane curves with fixed $j$-invariant
HTML articles powered by AMS MathViewer
- by Rahul Pandharipande
- Proc. Amer. Math. Soc. 125 (1997), 3471-3479
- DOI: https://doi.org/10.1090/S0002-9939-97-04136-1
- PDF | Request permission
Abstract:
The number of degree $d$ elliptic plane curves with fixed $j$-invariant passing through $3d-1$ general points in $\mathbf {P}^2$ is computed.References
- V. Alexeev, Moduli spaces $M_{g,n}(W)$ for Surfaces, preprint 1994.
- Paolo Aluffi, How many smooth plane cubics with given $j$-invariant are tangent to $8$ lines in general position?, Enumerative algebraic geometry (Copenhagen, 1989) Contemp. Math., vol. 123, Amer. Math. Soc., Providence, RI, 1991, pp. 15–29. MR 1143545, DOI 10.1090/conm/123/1143545
- K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), 1-60.
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Proc. Amer. Math. Soc. (to appear).
- P. Di Francesco and C. Itzykson, Quantum intersection rings, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 81–148. MR 1363054, DOI 10.1007/978-1-4612-4264-2_{4}
- E.-M. Ionel, Michigan State University Ph.D. thesis, (1996).
- S. Katz, Z. Qin, and Y. Ruan, Composition law and nodal genus-2 curves in $\mathbb {P}^2$, preprint 1996.
- Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062, DOI 10.1007/978-1-4612-4264-2_{1}2
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244
- Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, J. Diff. Geom. 42 (1995), 259-367.
Bibliographic Information
- Rahul Pandharipande
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- MR Author ID: 357813
- Email: rahul@math.uchicago.edu
- Received by editor(s): June 19, 1996
- Additional Notes: Partially supported by an NSF Post-Doctoral Fellowship
- Communicated by: Ron Donagi
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3471-3479
- MSC (1991): Primary 14N10, 14H10; Secondary 14E99
- DOI: https://doi.org/10.1090/S0002-9939-97-04136-1
- MathSciNet review: 1423328