Wavelet bases in rearrangement invariant function spaces
HTML articles powered by AMS MathViewer
- by Paolo M. Soardi
- Proc. Amer. Math. Soc. 125 (1997), 3669-3673
- DOI: https://doi.org/10.1090/S0002-9939-97-04207-X
- PDF | Request permission
Abstract:
We point out that the well known characterization of $L^{p}$ spaces ($1<p<\infty$) in terms of orthogonal wavelet bases extends to any separable rearrangement invariant Banach function space $X$ on $R^{n}$ (equipped with Lebesgue measure) with nontrivial Boyd’s indices. Moreover we show that such bases are unconditional bases of $X$.References
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- D. W. Boyd, The Hilbert transform on rearrangement-invariant spaces, Canadian J. Math. 19 (1967), 599–616. MR 212512, DOI 10.4153/CJM-1967-053-7
- Hernandez E. and Weiss G., A first course on wavelets, CRC Press, Boca Raton, Ann Arbor, London, Tokyo, 1996.
- Yves Meyer, Ondelettes et opérateurs. I, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 (French). Ondelettes. [Wavelets]. MR 1085487
- PawełDomański, Fréchet injective spaces of continuous functions, Results Math. 18 (1990), no. 3-4, 209–230. MR 1078419, DOI 10.1007/BF03323167
Bibliographic Information
- Paolo M. Soardi
- Email: soardi@vmimat.mat.unimi.it
- Received by editor(s): July 17, 1996
- Communicated by: J. Marshall Ash
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3669-3673
- MSC (1991): Primary 42C15
- DOI: https://doi.org/10.1090/S0002-9939-97-04207-X
- MathSciNet review: 1443168