First order difference system- existence and uniqueness
HTML articles powered by AMS MathViewer
- by K. N. Murty, P. V. S. Anand and V. Lakshmi Prasannam
- Proc. Amer. Math. Soc. 125 (1997), 3533-3539
- DOI: https://doi.org/10.1090/S0002-9939-97-04250-0
- PDF | Request permission
Abstract:
In this paper, the general solution of the homogeneous matrix difference system is constructed in terms of two fundamental matrix solutions. The general solution of the inhomogeneous matrix difference system is established by the variation of parameters formula. A unique solution of the two-point boundary value problem associated with the matrix difference system is constructed by applying the QR-algorithm and the Bartels-Stewart algorithm.References
- Ravi P. Agarwal, On multipoint boundary value problems for discrete equations, J. Math. Anal. Appl. 96 (1983), no. 2, 520–534. MR 719333, DOI 10.1016/0022-247X(83)90058-6
- V. Lakshmikantham and D. Trigiante, Theory of difference equations, Mathematics in Science and Engineering, vol. 181, Academic Press, Inc., Boston, MA, 1988. Numerical methods and applications. MR 939611
- F. V. Atkinson, Discrete and continuous boundary problems, Mathematics in Science and Engineering, Vol. 8, Academic Press, New York-London, 1964. MR 0176141
- Antony Jameson, Solution of the equation $AX+XB=C$ by inversion of an $M\times M$ or $N\times N$ matrix, SIAM J. Appl. Math. 16 (1968), 1020–1023. MR 234974, DOI 10.1137/0116083
- Peter Lancaster, Explicit solutions of linear matrix equations, SIAM Rev. 12 (1970), 544–566. MR 279115, DOI 10.1137/1012104
- G. W. Stewart and R. H. Bartels, A solution of the equation $AX+XB=C$, Common. ACM 15, 1976, 820–826.
- K. N. Murty, K. R. Prasad and P. V. S. Anand, Two-point boundary value problems associated with Liapunov type matrix difference system, Dynam. Systems Appl. 4 (1995), 205–213.
Bibliographic Information
- K. N. Murty
- Affiliation: Department of Applied Mathematics, Andhra University, Visakhapatnam - 530 003, India
- V. Lakshmi Prasannam
- Affiliation: Department of Mathematics, Post Graduate Centre, P. B. Siddhartha College Of Arts & Science, Vijayawada - 520 010, India
- Received by editor(s): April 17, 1996
- Communicated by: Hal L. Smith
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3533-3539
- MSC (1991): Primary 39A10, 34B05
- DOI: https://doi.org/10.1090/S0002-9939-97-04250-0
- MathSciNet review: 1443846