Infinitely renormalizable diffeomorphisms of the disk at the boundary of chaos
HTML articles powered by AMS MathViewer
- by Eleonora Catsigeras, Jean-Marc Gambaudo and Fernando Moreira
- Proc. Amer. Math. Soc. 126 (1998), 297-304
- DOI: https://doi.org/10.1090/S0002-9939-98-03945-8
- PDF | Request permission
Abstract:
We show that, among area contracting embeddings of the 2-disk, infinitely renormalizable maps with a bounded geometry either have positive topological entropy or correspond to a cascade of period doubling.References
- Rufus Bowen and John Franks, The periodic points of maps of the disk and the interval, Topology 15 (1976), no. 4, 337–342. MR 431282, DOI 10.1016/0040-9383(76)90026-4
- E. Catsigeras, “Cascades of period doubling of stable codimension one,” IMPA’s thesis, 1994.
- P. Coullet and C. Tresser, “Itérations d’endomorphismes et groupe de renormalisation,” J. Phys. C5 (1978),25–28.
- J.-M. Gambaudo, S. van Strien, and C. Tresser, Hénon-like maps with strange attractors: there exist $C^\infty$ Kupka-Smale diffeomorphisms on $S^2$ with neither sinks nor sources, Nonlinearity 2 (1989), no. 2, 287–304. MR 994094, DOI 10.1088/0951-7715/2/2/005
- Jean-Marc Gambaudo and Charles Tresser, How horseshoes are created, Instabilities and nonequilibrium structures, III (Valparaíso, 1989) Math. Appl., vol. 64, Kluwer Acad. Publ., Dordrecht, 1991, pp. 13–25. MR 1177837, DOI 10.1007/978-94-011-3442-2_{2}
- Jean-Marc Gambaudo and Charles Tresser, Self-similar constructions in smooth dynamics: rigidity, smoothness and dimension, Comm. Math. Phys. 150 (1992), no. 1, 45–58. MR 1188495, DOI 10.1007/BF02096564
- Mitchell J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys. 19 (1978), no. 1, 25–52. MR 501179, DOI 10.1007/BF01020332
- J. Hu, “Renormalization, rigidity and universality in bifurcation theory”, Ph. D. Dissertation, CUNY (1995).
- J. Hu and C. Tresser, “Period Doubling, Entropy, and Renormalization” preprint (1995).
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- MichałMisiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 2, 167–169 (English, with Russian summary). MR 542778
- Dennis Sullivan, Bounds, quadratic differentials, and renormalization conjectures, American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988) Amer. Math. Soc., Providence, RI, 1992, pp. 417–466. MR 1184622
- Charles Tresser and Pierre Coullet, Itérations d’endomorphismes et groupe de renormalisation, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 7, A577–A580 (French, with English summary). MR 512110
Bibliographic Information
- Eleonora Catsigeras
- Affiliation: Facultad de Ingeneria IMERL, C.C. 30, Montevideo, Uruguay
- MR Author ID: 323102
- Email: eleonora@fing.edu.uy
- Jean-Marc Gambaudo
- Affiliation: I.N.L.N., 1361, route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
- Email: gambaudo@inln.cnrs.fr
- Fernando Moreira
- Affiliation: Departamento de Matemática, Faculdade de Ciências do Porto, Praça Gomes Teixeira, 4000 Porto, Portugal
- Email: fsmoreir@fc.up.pt
- Received by editor(s): June 5, 1996
- Communicated by: Linda Keen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 297-304
- MSC (1991): Primary 58F13
- DOI: https://doi.org/10.1090/S0002-9939-98-03945-8
- MathSciNet review: 1403117