Closure ordering and the Kostant-Sekiguchi correspondence
HTML articles powered by AMS MathViewer
- by Dan Barbasch and Mark R. Sepanski
- Proc. Amer. Math. Soc. 126 (1998), 311-317
- DOI: https://doi.org/10.1090/S0002-9939-98-04090-8
- PDF | Request permission
Abstract:
Let $S$ be a real semisimple Lie group with Lie algebra $\mathfrak {s}=\mathfrak {k} +\mathfrak {p}$. The Kostant–Sekiguchi correspondence is a bijection between nilpotent $S$ orbits on $\mathfrak {s}$ and nilpotent $K_{\mathbb {C}}$ orbits on $\mathfrak {p}_{\mathbb {C}}$. In this note we prove that the closure relations among nilpotent orbits are preserved under the Kostant–Sekiguchi correspondence. The techniques rely on work of M. Vergne and P. Kronheimer.References
- S. K. Donaldson, Nahm’s equations and the classification of monopoles, Comm. Math. Phys. 96 (1984), no. 3, 387–407. MR 769355, DOI 10.1007/BF01214583
- P. B. Kronheimer, A hyper-Kählerian structure on coadjoint orbits of a semisimple complex group, J. London Math. Soc. (2) 42 (1990), no. 2, 193–208. MR 1083440, DOI 10.1112/jlms/s2-42.2.193
- P. B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Differential Geom. 32 (1990), no. 2, 473–490. MR 1072915, DOI 10.4310/jdg/1214445316
- Takuya Ohta, The closures of nilpotent orbits in the classical symmetric pairs and their singularities, Tohoku Math. J. (2) 43 (1991), no. 2, 161–211. MR 1104427, DOI 10.2748/tmj/1178227492
- Jir\B{o} Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987), no. 1, 127–138. MR 867991, DOI 10.2969/jmsj/03910127
- Michèle Vergne, Instantons et correspondance de Kostant-Sekiguchi, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 8, 901–906 (French, with English and French summaries). MR 1328708
Bibliographic Information
- Dan Barbasch
- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14850
- MR Author ID: 30950
- Email: barbasch@math.cornell.edu
- Mark R. Sepanski
- Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
- Address at time of publication: Department of Mathematics, Baylor University, Waco, Texas 76798-7328
- MR Author ID: 357734
- Email: Mark_Sepanski@Baylor.edu
- Received by editor(s): July 18, 1996
- Communicated by: Roe Goodman
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 311-317
- MSC (1991): Primary 22E15, 17B05
- DOI: https://doi.org/10.1090/S0002-9939-98-04090-8
- MathSciNet review: 1422847